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ABSTRACT

Research into the explanation of machine learning models, i.e., ex-
plainable AI (XAI), has seen a commensurate exponential growth
alongside deep artificial neural networks throughout the past decade.
For historical reasons, explanation and trust have been intertwined.
However, the focus on trust is too narrow, and has led the research
community astray from tried and true empirical methods that pro-
duced more defensible scientific knowledge about people and ex-
planations. To address this, we contribute a practical path forward
for researchers in the XAl field. We recommend researchers focus
on the utility of machine learning explanations instead of trust. We
outline five broad use cases where explanations are useful and, for
each, we describe pseudo-experiments that rely on objective empiri-
cal measurements and falsifiable hypotheses. We believe that this
experimental rigor is necessary to contribute to scientific knowledge
in the field of XAIL

Index Terms: Human-centered computing—Human computer in-
teraction (HCI)—HCI design and evaluation methods—User studies;
Computing methodologies—Machine learning—Machine learning
approaches—Neural networks

1 POSITION: MEASURE UTILITY, GAIN TRUST

Many Al HCI, and Visualization researchers may have assumed the
purpose of a machine learning explanation is to enhance, increase,
or calibrate users’ trust in the model [11]. In contrast with this
viewpoint and the large body of existing research, we argue that trust
is an insufficient metric for evaluating explanations (or models). We
recommend that researchers objectively measure the utility of the
explanation instead of subjectively measuring trust. Trust should
manifest through experience — as users use a system containing
a model and an explanation, their trust in the system will grow
if that system is reliable and provides a benefit. We also suspect
that designing explanations to optimize trust may short-circuit the
natural process of trust-building and also mislead users. This could
occur if the design of the explanation obfuscates the actual utility or
capability of the system. Optimizing for trust could be considered
a form of “metric hacking”, leading to artificially inflated levels of
trust compared to what would build naturally through experience.
If users’ increased trust in the model is not necessarily the most
appropriate way to measure the “goodness” of an explanation, then
what is? Do explanations have an intrinsic value? We believe the
answer to the latter question is simply no. Unlike machine learning
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models, which are built directly upon ground truth data, a ground
truth “correct” explanation of a machine learning model is not gen-
erally available. Thus, we are not likely to find a way to measure
the error between a given explanation and the correct one, except
in very specific use cases, e.g., image captioning. Much like a data
visualization, the purpose of an explanation is to communicate use-
ful information to a human — the visualization community has no
methods for directly measuring the correctness of a visualization.
We do however have many methods to measure the utility of visual-
ization, which all require considering what tasks users perform with
that visualization. In fact, many explanations are visualisations [23],
so the full range of techniques the visualization community has em-
ployed for evaluating visualizations remain relevant for evaluating
machine learning explanations.

There are many use cases where explanations are helpful as part
of a larger workflow. Hohman et al. [23] and Mohseni et al. [32]
both describe in depth the various users and uses of explanations.
For the purposes of our argument in this paper, we focus on the
following use cases: debugging, validating, and selecting a model;
understanding a model; teaming with a model; and challenging a
model. Each of these use cases allow us to imagine “downstream
tasks” where we can quantitatively measure the users’ performance
with or without the explanation. Resulting differences in perfor-
mance provide indirect but compelling evidence of the utility of the
explanation. There are many potential ways of measuring “expla-
nation goodness”, which interested readers can find surveyed by
Mohseni et al. [32]. Hoffman et al. [22] also discuss several methods
for evaluating explanations including those that go beyond trust.

We have taken the position that trust is a flawed metric for mea-
suring the “goodness” of a machine learning explanation. The next
section of this paper will provide historical context for this argument.
We found that trust is a metric advocated by people who want the
models they build to be adopted (thus, a good explanation is one
that builds trust and increases the likelihood of adoption). The final
section of this paper provides practical guidance for how to measure
the utility of an explanation across the use cases mentioned above.

2 THE PAST: HISTORICAL REASONS FOR THE COUPLING
OF TRUST AND EXPLANATIONS

While the success of deep neural networks in various machine learn-
ing tasks is a recent phenomenon, machine learning as a general
practice has existed for much longer. Almost since the beginning,
developers of machine learning algorithms have sought to increase
the acceptance and uptake of those algorithms. To do so, researchers
had to prove to others what they felt they knew to be true — that
these algorithms could be trusted to work correctly and had bene-
fit. Thus, explanations of classical machine learning were initially
developed for the purpose of increasing users’ trust. As the field
changed over time, the coupling of explanations to trust-building
became a habit more than best-practice. Today, explanations can and
should be used more widely beyond increasing trust — measuring
their effectiveness should account for this broader applicability.



2.1 “Classical” Machine Learning

In 2000, AlexNet had not yet won an image classification compe-
tition and the field of artificial intelligence (AI) was focused on
things like “symbolic systems”, which were built on pieces of mod-
ular knowledge, gleaned from experts or large databases and stored
into a searchable structure such as a decision tree. Herlocker et
al. [21] wrote that “current recommender systems are black boxes,
providing no transparency into the working of the recommendation.
Explanations provide that transparency, exposing the reasoning and
data behind a recommendation” and presented an experiment that
measured which explanations increased consumers’ acceptance of
recommendations generated by an intelligent agent and which “nega-
tively contributing to the acceptance of the recommendation.” These
systems may appear to be mysterious to end users but they were just
data structures to the researchers who built and deployed them. Re-
searchers knew how to construct and debug these structures, because
it was the same way that they constructed and debugged code.

However, these researchers needed a way to get the skeptical pub-
lic — including corporations — to accept these expert systems. As
Bilgic and Mooney [7] put it in 2005, “in order for users to benefit,
they must trust the system’s recommendations and accept them. A
system’s ability to explain its recommendations in a way that makes
its reasoning more transparent can contribute significantly to users’
acceptance of its suggestions.” This was the apparent goal of trust
with pre-neural-network-Al: to help purchasers and users to under-
stand the limits of the system so that an inevitable wrong answer
would not scare them away. By 2006, Pu and Chen [37] referred
to this pursuit as “investigating design issues for trust-inducing
interfaces,” and in 2009, Haynes et al. [20] observed that “[a]s intel-
ligent agents become more pervasive in our day-to-day computing
environment, and as their role becomes more consequential with
respect to human purposes, they will be increasingly called upon to
communicate in a way that engenders trust”

2.2 Deep Learning and the Image Domain

In 2012, AlexNet achieved a top-5 error rate of 15.3% in the Ima-
geNet Large Scale Visual Recognition Challenge [28] and by 2013
researchers were trying to peer inside the Convolutional Neural Net-
works which made up AlexNet. Why? Because, as Zeiler and Fer-
gus [51] noted less than a year later, “there is no clear understanding
of why they perform so well, or how they might be improved.” Or, as
Holzinger et al. [25] put it,“Technically, the problem of explainabil-
ity is as old as Al itself and classic Al represented comprehensible
retraceable approaches. However, their weakness was in dealing
with uncertainties of the real world. Through the introduction of
probabilistic learning, applications became increasingly successful
but increasingly opaque.” Researchers were suddenly in the same
position as those suspicious consumers: they weren’t sure why or
how neural networks worked, or what tweaks to their construction
might improve or deteriorate performance. In response, researchers
began trying to find ways to prove to themselves that these new
‘expert’ systems were trustworthy.

From figuring out which layers were detecting edges versus tex-
ture [43], to generating generalized images of what specific neuron
clusters were capturing [33], or understanding what changes could
produce wrong answers in adversarial attacks, researchers in Al had
to go back to basics when neural networks exploded onto the scene.
By 2016, Zeiler and Fergus’s [4] method of pushing convolutions
backwards in a network had inspired the development of Layer-
wise Relevance Propagation. That same year, Ribiero et al. [38]
published their methodology, called LIME, for generating local or
global counter-explanations for image classifiers. In 2017, a method-
ology called Grad-CAM was developed, which used gradients to
highlight parts of the input to an image classifier which contributed
most to the outcome [42]. All of these methods were used by the
research community to try and better understand the inner workings

of deep neural networks.

Most work on end-user-facing trust in this period was still an-
alyzing trust in symbolic systems and other more established ma-
chine learning techniques. These experiments still largely aimed
to increase user’s trust in the systems, by understanding what mod-
ulated user trust up or down. Researchers tested explanations of
simplified models of bagged decision trees, and found that “when
soundness was very low, participants experienced more mental de-
mand and lost trust in the explanations” [29]. Another experiment
tested explanations of a system which added a probabilistic Markov
Decision Process to a task planning application based on a finite
state machine, and found “that transparency explanations can help
to reduce the negative effects of trust loss [34].” Some experiments
used the “Wizard of Oz” approach to test user trust in automated
systems, where “the behavior of the software is controlled by the
researcher unbeknown to the participant [8].” Another experiment
conducted in 2016 used an Auto-Encoder developed in 2010 to find
“that perceived system ability was more important in determining
trust amongst with-explanation participants and perceived trans-
parency was a greater influence on the trust of participants who did
not receive explanations [24].” Berkovsky et al. [6] ran an experi-
ment “to investigate the dependencies between various aspects of
recommendation interfaces and user-system trust.”

2.3 The Shift to Appropriate Trust

In August of 2016, DARPA announced its Explainable Artificial
Intelligence program. The announcement brought into common use
among researchers the phrase “appropriate trust” and the idea of
explainable Al among the general population [19]. Around the same
time, the European Union (EU) had announced that the General Data
Protection Regulation (GDPR) would take effect in 2018 [48]. This
regulation specified that companies could no longer use systems to
make certain decisions about consumers who lived in the EU, unless
the company could explain the decision. These two events seem to
have spurred researchers to tentatively turn their efforts at explaining
neural networks outside of the research community, engaging end
users and sometimes everyday people.

Researchers began to comb over the progress made on peering
inside of neural networks and trying to find ways to use these tools
to increase appropriate trust among people outside the AI commu-
nity. For example, Schaefer et al. [41] found that “by understand-
ing the transparency elements that increase effective bi-directional
communication [in human-computer teams], we can... engender
appropriate trust and reliance in the system.”

In addition, much debate ensued over defining, justifying, and
measuring ‘explainable’ and ‘trust’ in this new context. Jiang et
al. [27] presented the concept of a trust score, to provide “infor-
mation about the relative positions of the data points, which may
be lost in common approaches such as the model confidence when
the model is trained using stochastic gradient descent.” A plethora
of taxonomies for trust measurements and explanations appeared.
Adadi and Berrada [1] claimed explanations are needed for four
reasons: to justify, to control, to improve, and to discover. Pallotta
et al. [35] argue that “explanations need to be carefully crafted to fit
with their desired aim,” and described a methodology which would
increase user trust enough to prevent users from interfering with
home heating systems. Holzinger et al. [26] argued that increasing
trust in deep learning systems necessarily included mechanisms for
users to change the system’s outcomes.

Out of this debate emerged a growing consensus that the emphasis
should be on the word ‘appropriate’ in the phrase ‘appropriate trust’.
Yin et al. [50] measured user’s trust in a model and found that both
the actual capabilities of the model and the specific instances seen
by the user influence a user’s trust in the model. That is to say, if a
model is not accurate, and this is evident to users, they don’t trust it
— and that’s a good thing. However, another experiment found that



users can rely too heavily on a poor model, reporting that “in 67.3%
of all cases, participants predicted that the system would be correct,
whereas it was only correct in 42.9% of the cases [2].”

Neural networks and deep learning shifted the paradigm in such
a way that engendering trust, even appropriate trust, is no longer
sufficient. The idea of trust is already ambiguous, and applying
it to deep neural networks when even those who build them do
not understand the intricacies of the model logic or determinations
creates too many layers of abstraction to produce meaningful science.
Instead, researchers should re-evaluate the revelations of 2013, and
be humbled by the fact that we still do not know how to debug or
improve these networks with much certainty. To that end, creating
falsifiable and provable hypotheses should replace the concept of
increasing or calibrating trust. Although appropriate trust is a more
objective measurement of trust, we ought to be measuring these
systems with more relevant metrics that can be clearly measured,
tested, and replicated.

3 A PossSIBLE FUTURE: DOWNSTREAM TASKS AND FALSI-
FIABLE HYPOTHESES

As previously argued, the utility of an explanation must be tied to its
purpose — why it was created and the context in which it is intended
to be used. Trust should not be a metric we maximize through
design, but should be a benefit gained after a user interacts with a
useful system over time. Thus we believe that studies evaluating
explanations should not measure trust unless they are longitudinal,
“in the wild”, and consider the entire system. Instead, we argue that
research studies that seek to measure the benefit of novel explana-
tions should focus on utility over trust. We have identified five broad
use cases where researchers could design experiments to measure
the utility of explanations.

1. Model Debugging and Validation: Is the model working as
designed? Why is the model making mistakes?

2. Model Selection: Potentially going beyond simple performance
metrics like F-score, which model is best?

3. Mental Model and Model Understanding: How does the model
function or behave? Can I learn something interesting from
the model?

4. Human Machine Teaming: Can I do a task with the model
better than on my own (and better than the model on its own)?

5. Model Feedback, Challenging, and Prescription: When I am
affected by a model’s decision, how do I challenge that decision
or correct the model when it’s wrong about me? What should
I change about me to get a better outcome in the future?

The utility of a model and associated explanations can be mea-
sured from several viewpoints. We focus on three: the model devel-
oper, the end user of the model, and “imposed users” (individuals
or groups who are affected by the model’s decisions, outcomes, or
recommendations). The model developer may consider each of the
first three contexts — Model Debugging and Validation; Model
Selection; and Mental Model and Model Understanding — as they
iterate in development. In contrast, end users will typically partici-
pate in Model Selection, Mental Model and Model Understanding,
or Human Machine Teaming. Model Feedback, Challenging, and
Prescription is of greatest interest to imposed users. They may also
be interested in the Mental Model and Model Understanding use
case. Figure 1 illustrates the overlap of relevant use cases across the
three types of users. Our taxonomy is similar to that of Mohseni et
al [32], although we distinguish imposed users from end users and
do not distinguish end users from “data experts”.

In addition to considering the above users and use cases, i.e., the
context in which an explanation is used, we also need to design
controlled experiments with falsifiable hypotheses. We believe the
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Figure 1: Venn diagram illustrating the overlap in interest across
use cases for differing viewpoints — from the developer who builds
the model, the end user who selects and applies the model, or the
imposed user who is affected by the decisions or recommendations
the model provides.

“gold standard” XAI evaluation experiment should be one where
all participants perform the same task, but a randomly assigned
group of participants performs the task without the assistance of
the explanation being evaluated. By comparing the performance of
groups with and without the explanation, we can make claims about
the benefit of that explanation for the task. The hypothesis (that
the explanation is useful) is falsified when there is no significant
difference between these groups.

Not all experiments in this research domain should follow this
rigid experimental design, but we suggest following some basic
guidelines. Researchers should first consider the three key com-
ponents of their system: the human, the machine, and the expla-
nation. Next, researchers should determine what can be measured
(or is meaningful to measure) using different combinations of these
components. Below are examples of four combinations of these
components and how they provide us different information:

* Human only: baseline performance of human at the task (the
fully manual scenario)

* Machine only: baseline performance of machine at the task
(the fully automated scenario)

* Human + Machine: baseline performance of the system when
the user can rely on the machine learning output

e Human + Machine + Explanation: the performance of the
system when the explanation and machine learning output are
available to the user

Thus, one should compare the performance of Human + Ma-
chine + Explanation group against Human + Machine group. The
Human only and Machine only provide additional context for this
comparison. For example, there may be a significant benefit of the
explanation, but perhaps the Machine only performance is greatest,
indicating that the system should be fully automated.

Of course, researchers should use their best judgement about
what combinations are meaningful or practical for their specific
applications. For example, Yang et al. [49] designed an experiment
in-line with this framework. However, the researchers decided not to
measure the Human only condition because there was no reasonable
expectation that unaided participants had the expertise to perform the
task (identifying the species of a tree given a picture of a single leaf).
The researchers decided to measure Human + Machine performance
as a baseline instead, which they found closely aligned with Machine
only performance, indicative of overtrust. In that study, the Human
+ Machine + Explanation performance was greater than both of the
baselines, providing strong evidence of the benefit of the explanation.



The remainder of this section is organized around the use cases
previously discussed and hypothetical downstream tasks for eval-
uation purposes. For each downstream task we describe a pseudo-
experiment that is intended to provide inspiration for researchers
who wish to conduct the scientifically rigorous research we have
argued for in our position statement.

3.1 Model Debugging and Validation

Model Debugging and Validation is a developer-focused use case
that leverages explanations as a means of improving the model.
Here, explanations are used to provide insight into the mechanisms
of complex “black box” models, e.g., neural networks or other deep
learning models [9], to identify flaws or biases in the algorithm
or the training data that can be addressed in development. For
example, a developer may use explanations of model decisions of
varying confidence to probe whether the model relies strongly on
non-actionable or biased features and identify constraints that are
necessary to implement within the model (as such models should
not be used in most, if not all, settings [46]).

Downstream Task: Given an incorrect model decision and cor-
responding explanation, determine the reason the model made a
mistake.

A set of model mistakes are coded by the research team in order to
establish a ground truth. In the case of a classification task, these
coded mistakes may be an annotation of the image qualities that
misled the model, e.g., occlusion of the subject, pixellation, and
artifacts in the image as well as qualities of the model behavior, e.g.,
misplaced model attention, lack of training examples. Inter-rater
reliability is established on the coded mistakes and the images are
presented to users to determine if explanation methods are useful
in helping users determining why a model made an error. Users’
ability to correctly describe the reason for the model’s mistakes are
measured with and without the explanation.

Downstream Task: Identify if the model will improve from addi-
tional training.

Given three datasets, a machine learning model is trained on one and
the user is presented with data in all three sets and the performance
of the model, e.g. F-score on validation (from train) and the two
test sets. The user is asked whether the performance on the test set
would significantly improve if the model can include the second test
set in its training. Both train and test examples are available to the
user, and in the Human + Machine + Explanation condition, the
user can view explanations of model decisions on the original train
and test data. The ground truth is measurable because the difference
in model performance on the smaller and larger training set are avail-
able. A variant of this experiment would ask the user to estimate the
difference in performance. A challenge of this experimental design
is the creation of datasets with suitable differences in performance.

Downstream Task: Given a model that exploits artifacts or loop-
holes of the data, describe the model’s behavior.

Model “intelligence” has been reasonably challenged in recent years
by the discovery of ‘Clever Hans’ behaviors. This reveals the
model’s reliance on features of the data that humans would con-
sider unintuitive (such as source tags in images) and are threats to
generalizability [30]. In this task, users explore the model explana-
tion to describe how decisions are being made about classes within
the data. Performance is measured by determining whether users
are able to discover undesirable behaviors in the model’s decision-
making, such as identification of trains by spotting rails, boats just
by identifying water, or wolves by focusing on snow [38]. A control
condition, i.e. no explanation, is possible, but would require showing
the user many correct and incorrect classifications to give the user
an opportunity to understand the model based solely on behavior.

3.2 Model Selection

Our second use case, Model Selection, is typically the focus of trust
and explanation analyses when considered together because it seeks
to answer the intuitive question of “do I #rust this model enough to
use it?” or “do I trust this model more than another, and thus should
use it instead?”” Although we argue this is a narrow application of
trust and explanations together, it is a common (and important) use
case to consider. We note that the model selection use case is more
complicated (and potentially problematic) when a second predictive
or generative model is required to generate the explanations rather
than using artifacts of or features extracted directly from the model
under assessment (e.g. captions generated from image inputs and
model decisions to explain model decisions).

Downstream Task: Determine which model is better suited for a
given task.

In this task, users consider two models and either the decisions alone
or the decisions alongside their accompanying explanations. Users’
performance identifying which model performs better on an unseen
test set across the two groups can be used to quantify the quality of
the accompanying explanations — e.g., by measuring whether using
the explanations to identify whether the model decision was right
(or wrong) for the right (or wrong) reasons enabled users to better
distinguish which model is best suited for the task.

As a variant, users may be asked to determine which of the models
would best extend to a specific out-of-domain task, e.g., classifying
foods after seeing classification examples of animals or classifying
posts on Twitter after seeing classification examples using Reddit
data. These tasks can intuitively be extended to an experiment
ranking multiple models, all of which can be presented and paired
with or without an explanation method and outcomes.

3.3 Mental Model and Model Understanding

The Mental Model and Model Understanding use case relates to
whether a user builds an accurate mental model, that is, a mental
model which functionally mirrors the overall behavior and decision
making of the machine learning model. Visualizations are a popular
type of explanation for building and eliciting mental models. Mental
models are important for developers to understand their own models.
They are also critical for end users who use machine learning to gain
insight about a new domain or to complete a task. Accurate mental
models can also be helpful for imposed users who are affected by
model decisions, for example, if they are denied services because
of the model’s classification of their profile or history. These users
may want to understand how the model makes decisions in order to
set expectations of how the model will impact the user.

This use case differs from Model Selection or Model Debug-
ging and Validation in that the focus shifts from explaining specific
decisions to comprehending the relationships between the model
input and output, or understanding the inner workings of a model’s
decision-making. This use case is challenging because there are
no ways to directly observe a user’s mental model, and appropriate
metrics for measuring understanding are still widely debated [45].

Downstream Task: Given examples of past behaviors, extrapolate
what a model will do given unseen inputs.

In this task, users are given a series of inputs, and the corresponding
model outputs. Then, users are presented with a series of previously
unseen inputs. A randomly assigned subset, representing the Human
+ Machine + Explanation condition, are given the corresponding
explanations. The control group, representing the Human + Machine
condition, is not provided the explanations. Users are then asked
to either select from a list, or describe in their own words, their
expectation of model output. More accurate user predictions of the
model output for the altered input provides evidence of the quality
of the mental model built with the support of the explanation.



Some variations of this task include using different types of input
for the user to base their extrapolations on. For instance, the set of
inputs may consist of all new inputs, none ever seen in the initial
series of inputs with associated outputs, or a mix of inputs seen
before and new inputs. Ribiero et al. [39] used all new inputs when
testing a tool which presents a visual summary of why the model
made a specific classification. In their user study, users were asked to
predict a model’s output first without an explanation, then presented
with a set of decisions with explanation and finally asked to perform
one more round of predicting the model’s outputs.

Another variation could be in the temporal dimension of extrap-
olation. For a model such as an image classifier, any input and
output can happen in any order. However, with a model such as a
reinforcement learning agent, the task could consist of predicting
the agent’s immediate next move, or any number of time steps in
the future, as explored by Anderson et al. [3]. This type of variation
would explore if a user’s mental model is accurate enough to predict
the model’s future choices, and how far into the future that mental
model accurately extends.

Downstream Task: Given information about a model’s past per-
Jormance, match the model to a novel output.

When the context of decisions belonging only to a specified model
or models is explicitly set, as in the above described task, users may
overestimate how well they understand a model. In this task, user
groups have that narrowed context removed, and are asked to dif-
ferentiate between multiple models. User groups are given a series
of input-output pairs for a set of models during a training phase. It
is specified which model created each output to help users build
mental models. After the training phase, users are presented with
a new, previously unseen set of inputs and corresponding model
outputs. Users are asked to match the models to the new decisions,
or to identify if none of the previously presented models would
have produced the given decision. This task is repeated including
explanations for the decisions made by the model.

The Human + Machine condition would be represented by a user
group receiving no additional explanation of the model’s outputs dur-
ing the process of building a mental model. The Human + Machine
+ Explanation condition would be represented by a group of users
who get an explanation of each model’s outputs in the mental model
building phase. Any improvement in ability to correctly correspond
models to the new decisions would signal that explanations help
users to better understand the model.

One variant of this experiment would be to test users’ understand-
ing of a single model by purposely altering the output of the model
and testing if users can identify if the output is incorrect, and what
part of the output is incorrect. Chang et al. [10] use this variation in
a user study of a model which sorted documents into topics, which
are defined by a set of words. Users were tested to see if they could
detect manipulation by researchers of both the words describing a
topic, and the topic assigned to a document.

Another variant of this task would be to change the training
process, so that instead of using the input-output pairs, the users
would be given a global explanation or description of each model.
For example, users may be told that an image classifier was trained
on a specific data set of birds, and has been observed to rely heavily
on beak shape and size in its classifications.

Downstream Task: Given a model’s past behavior, identify if ex-
planations speed up user’s creation of a mental model.

This task consists of selecting the expected model output given a
previously unseen input (evaluation phase) after having studied ex-
amples of inputs and the corresponding models outputs (learning
phase). Users in the Human + Machine + Explanation group are also
provided an explanation corresponding to each model input-output
pair. Users are informed that they will be timed and can proceed

through as many sets of inputs and outputs as they want. Users can
switch to the evaluation phase at anytime where real-time feedback
is given on whether the user chose the right output. The user is free
to move back to the learning phase to study more sets of known
inputs and outputs before returning again to the evaluation phase.
The total time spent, number of cycles, or accuracy in predicting
the model behavior can be compared across groups to determine the
benefit of the explanation. In a variation used by Lim et al. [31], a
set number of examples are presented in a learning phase and users
are timed according to how long they spend in the learning phase.
Once users move on to the evaluation phase, they cannot return to
the learning phase, and the time taken to answer each question in
the task phase is also recorded. Lim et al. compared groups of users
receiving explanations during the learning phase to groups getting
no explanations. Alternatively, this task can be used to compare
the efficacy of different explanations, which could be imperative in
safety-critical environments.

3.4 Human Machine Teaming

Human Machine Teaming distinguishes models as teammates, be-
yond simple tools. Here, high-quality explanations can elevate mod-
els to act as teammates by providing more insightful and actionable
recommendations. Essentially, good explanations can serve as the
models response to “explain your work” or “why?” queries and
assist users in complicated tasks or alleviate the cognitive load of
human teammates. As human machine teaming necessarily gener-
ates more specific use cases than the tasks enumerated in previous
sections, this section utilizes more specific use cases, that can of
course be generalized to other domains.

Downstream Task: Identify whether users should accept or reject
model decisions.

Given a series of inputs, users are tasked with agreeing or disagreeing
with a model’s output, accompanied by an explanation of interest
for a subset of user groups. Performance in this case is measured
based on the accuracy of final decisions selected by the user, which
is either the model decision when users agree with the decision or
the user-selected decision when users disagree with the model. This
task effectively calibrates the users’ appropriate trust in the model.
Performance of the Human + Machine + Explanation group is
compared directly to the Human + Machine group. This experiment
requires that the Human only performance be less than the Machine
only performance to show a benefit, such as classifying tree leaves
in images [49] (instead of everyday objects) or performing quality
control in an assembly line scenario [5].

An extension to this task can consider reduction of the cognitive
load for users as the desired outcome and user performance can also
be measured using proxies for cognitive load such as the number of
correct judgements made by the user in a limited time period or the
time needed to complete a specified number of correct judgements.

Downstream Task: Determine whether properly abstracted expla-
nations improve human experience and performance in an au-
tonomous driving scenario.

One of the challenges when designing model explanations lies in
understanding which end user the explanation is being designed
for. For example, levels of abstraction change drastically if expla-
nations are designed to target the software engineer responsible for
autonomous navigation and collision avoidance rather than the driver
sitting behind the wheel. In this task, user groups driving simulated
autonomous vehicles would be provided with simplistic explanations
of the car’s behavior as a driving test takes place such as warnings
about poor object detection in fog or reduced traction in sharp curves.
These explanations would be given when environmental dangers are
encountered during the simulation. A control group would receive
no explanations. Performance can then be measured based on the



users’ situational awareness (SAGAT, etc. [16]), attention switching
from the road to the explanations, trust questionnaires, and other
physiological indicators (e.g., heart rate, eye motion).

An extension to this task can present the explanations of the car’s
behavior in a “user manual” style before the driving test begins
and measure how often the drivers accurately respond to hazardous
conditions with no real-time input.

Downstream Task: Determine whether explanations increase the
efficiency of a human machine team.

Healthcare has been a focus of recent work in human machine
teaming, and serves as an exemplary application domain. Studies
have shown the effectiveness of explanations on both trust and in-
terpretability in ML models focused on medical diagnosis [14]. As
the availability and complexity of medical technology increases,
physicians may find themselves in need of machine agents who can
help them narrow in on useful treatments and diagnoses. In this task,
the user works with an automated physician’s assistant who makes
recommendations for data collection, testing, and diagnoses during
a physician-patient interaction.

The model presents choices to the physician with accompanying
explanations of these choices in the Human + Machine + Explana-
tion case, such as visuals of specific patient data and its risk contri-
bution for certain diagnoses. This can present the issue of branching,
where presented choices may generate a longer path to the end goal
with the potential of detours that do not offer viable paths to the
solution. Two control groups exist for this task, that being Human +
Machine groups with no generated explanations of proffered choices
and Human only groups which receive no model assistance. How
long it takes user groups to arrive at the correct diagnosis, the cost of
that treatment, and how many incorrect branches were explored are
all viable performance metrics to establish whether the explanations
of model benefited users. As this task requires trained experts, i.e.
physicians, the Human only baseline is meaningful.

A wide array of extended tasks can be generated from this initial
example. Time limits can be imposed on the entire task to con-
sider cognitive load on the users, and to examine whether or not
user groups are able to finish the task at all. The use case can also
be extended into the work allocation domain, wherein the model
recommends actions and gives explanations (or does not) that have
cascading consequences on the subsequent work tasks, creating a
dynamic environment that is shaped by the human-machine team
and which can end up in any number of end states with measurable
utilities. Additional physiological measures, post-experiment ques-
tionnaires, and human factors metrics (e.g. situational awareness
or perceived cognitive load) can then be applied to understand the
usefulness of these model explanations along different dimensions.

3.5 Model Feedback, Challenging, and Prescription

The Model Feedback, Challenging, and Prescription use case ef-
fectively considers trust in the system, i.e., the model in context of
the impact on imposed users of its decisions and subsequent recom-
mendations or actions taken. The need for effective explanation of
model decisions for recourse is a natural response to the continued
widespread application of artificial intelligence or machine learning
models to supplement or automate tasks in domains where incorrect
or biased recommendations can have significant human impacts.
These domains include predictive policing [17], recidivism predic-
tion [12, 15], and hate speech and abusive language identification
online [13,36,40]. As an example of the recognized necessity of
clear explanations for this use case, the European Union’s GDPR
directly addresses the “right of citizens to receive an explanation for
algorithmic decisions” [18].

Downstream Task: Given a model’s decision, identify how to get
a better outcome.

In this task, a user may be given an input and a decision from a
model and asked to identify what has to be changed or updated in
the input to get a better decision. User groups are either given an
accompanying explanation for the decision of the unaltered input as
well as or only the model output. This task touches on counterfactual
explanations and the prescriptive use of algorithmic decision making
systems. The “What if tool” [47] supports this type of counterfactual
reasoning. However, the tool is oriented towards end users and devel-
opers — there is still a research opportunity to design explanations
that support imposed users for this use case.

Given the model is trustworthy, providing the right outcome given
the right data, but the user desires a different outcome, does the
model explanation provide enough information for a user to identify
the personal changes needed to obtain the desired outcome? Glass-
Box [44] is an example of such a downstream task in practice — users,
given a pre-established persona, probe a loan application system that
provides contrastive, counterfactual explanations to understand and
challenge the model’s automated decisions.

Downstream Task: Given a model’s decision, determine if the de-
cision was based on incorrect data, biased data, or bad inference.
User groups are provided an overview of the training examples for
a given model and a series of input-output pairs where the model
output was incorrect. Users are then asked to identify why the model
provided an incorrect response or what methods might be employed
to correct the decision (e.g., more training examples for edge-case
inputs, removal of misleading or biased training examples, or re-
moval or preprocessing of flawed inputs) and whether the change
required is a reasonable expectation (reduce the level of outstand-
ing credit to receive a new load) or an indication of bias (change
your gender/race to receive a new loan). A control group (Human
+ Machine) will not receive model explanations, but would have
access to the training dataset in order to contrast performance with
the Human + Machine + Explanation group to examine the benefits
of the explanations. More accurate user predictions of the model
output for the altered input provides a quantitative measure of the
quality of the explanation to identify biases in the model — whether
the model is fair across the affected population — and also as a means
to identify challenge-worthy individual decisions.

4 CONCLUSIONS

In this paper we have argued that trust in a machine learning model
is a benefit of a useful and reliable system that employs that model.
However, trust develops slowly over time, and to rely on trust as a
metric for evaluating the value of an explanation is problematic and
could lead to artificially inflated levels of trust to the users’ detriment.
We believe trust should only be measured in a longitudinal and
empirical study considering the full system.

Instead, researchers should design for and measure utility. Utility-
oriented evaluation encourages researchers to consider the broader
context of the explanation, i.e., how it is intended to be used. It also
encourages researchers to employ scientific methodologies to evalu-
ate explanations, leveraging falsifiable hypotheses and objectively
measurable quantities as evidence. Towards this end, we have sug-
gested many pseudo-experimental designs involving “downstream
tasks” that can be used to evaluate explanations in this manner. We
hope the impact of this work will be to inspire many new experiments
that solidify the scientific foundation relating humans, machines,
and explanations.
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