
Towards Trust-Augmented Visual Analytics for
Data-Driven Energy Modeling

Akshith Reddy Kandakatla*

New Jersey
Institute of Technology

Vikas Chandan†

Pacific NorthWest
National Lab

Soumya Kundu‡

Pacific NorthWest
National Lab

Indrasis Chakraborty§

Lawrence and Livermore
National Lab

Kristin Cook¶

Pacific NorthWest
National Lab

Aritra Dasgupta||

New Jersey
Institute of Technology

ABSTRACT

The promise of data-driven predictive modeling is being increasingly
realized in various science and engineering disciplines, where ex-
perts are used to the more conventional, simulation-driven modeling
practices. However, trust remains a bottleneck for greater adoption
of machine learning-based models for domain experts, who might
not be necessarily trained in data science. In this paper, we focus on
the building energy domain, where physics-based simulations are be-
ing complemented or replaced by machine learning-based methods
for forecasting energy supply and demand at various spatio-temporal
scales. We study the trust problem in close collaboration with energy
scientists and engineers and describe how visual analytics can be
leveraged for alleviating this trust bottleneck for stakeholders with
varying degrees of expertise and analytical goals in this domain.

1 INTRODUCTION

The field of visual analytics was born out of the need to marry com-
putational capabilities of automated methods with the perceptual
and cognitive human faculties in the context of data analysis. As
such, visual analytics is defined as the “science of analytical reason-
ing facilitated by interactive, visual interfaces” [12], implying that
a human analyst is actively involved for analyzing the outputs of
statistical or machine learning models, and for refining the models
implicitly or explicitly using their domain knowledge. The degree
and nature of human feedback essentially depend on the goal and
background of the user. Recently, Sacha et al. [38] had reflected
on the importance of users’ trust in shaping data transformation
and knowledge generation at various stages of the visual analytic
pipeline. In this paper, we analyze how visual analytics can be ap-
plied for the purpose of fostering greater trust and reliability in the
energy modeling domain for data-driven forecasting and decision-
making.

Algorithmic decision-making leveraging machine learning mod-
els is becoming increasingly adopted across domains such as and
finance [5], healthcare [6,27], defense [16], and crime control [2]. In
the realm of energy modeling, while physics based simulations are
widely used for forecasting energy demand and consumption, there
is a growing recognition of the transformative effect that data-driven
models can have in more accurate and proactive forecasting [1]. In
Figure 1, we illustrate how different stakeholders in energy modeling
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Figure 1: Illustrating the roles of the different stakeholders for
energy modeling with respect to a data-driven predictive analysis
pipeline. A trust gap exists on both sides, where energy modelers
need transparent analytical methods for model accessibility and cal-
ibration, and building and grid operators need tools that can both
explain model predictions and help them make better real-time deci-
sions.

can leverage predictive models, based on their goals and expertise.
Energy modelers and building or grid operators might not be nec-
essarily trained in data science methods. Energy modelers apply
their domain knowledge in configuring training data or developing
more reliable metrics for calibrating the performance of alternative
models. They need to develop appropriate levels of trust in the
model predictions for generating and testing alternative hypothesis.
This process is usually mediated by a data scientist. On the other
hand, building and grid operators generally inspect model predic-
tions in a black-box fashion. They need to trust the predictions for
ultimately taking real-time actions, for balancing energy demand
and consumption patterns in buildings or the grid.

In visual analytics, except for a few studies [10, 14], we lack a
thorough characterization of the interplay between user expertise
and trust at different stages of the data transformation pipeline. In
the energy modeling domain, it is critical to understand the goals
and needs of the diverse stakeholders, like energy modelers and
building operators, for developing and tailoring the techniques in
a way they can elicit a high level of trust in both the data and the
technology. To this end, in this paper, we present an initial analysis of
the key trust barriers towards the adoption of data-driven predictive
model through a collaboration among visual analytics researchers
and energy modelers. We present a roadmap about the role of visual
analytics for mitigating these trust barriers and reflect on the related
interdisciplinary research directions.
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Figure 2: Energy modeling entails complex data analysis tasks for
generating forecasts for supply and demand at different scales of
space and time.

2 CHARACTERIZING DATA-DRIVEN ENERGY MODELING

Energy generation and consumption are critical indicators of the
socio-economic health of a city, state, country, or region. Commer-
cial and residential electrical power consumption drives demand
for energy in local and regional power grids, with the US Energy
Information Administration report attributing 75% of all US elec-
tricity consumption in 2018 to buildings. Social behavior and built
environments like smart cities also contribute to the nature of en-
ergy consumption. On the other hand, there is a growing push for
clean energy generation: ”scaling up electricity from renewables
will be crucial for the decarbonization of the world’s energy sys-
tem”. To achieve the United Nations (U.N.) specified sustainable
development goal of achieving affordable and clean energy for all
by 2030, such socio-economic dimensions of energy consumption
will play a key role. Driving a sustainable, affordable, and clean
energy ecosystem of the future presents evolving challenges to the
knowledge workers who are tasked with analyzing and predicting
ever-changing energy generation and consumption patterns; discov-
ering novel opportunities to accommodate increasing penetration
of cleaner energy resources; as well as understanding the potential
and impacts of implementing advanced energy efficiency principles.
In Figure 2, we illustrate the complexity of the energy modeling
process and describe the role of the data and stakeholders in the
context of prediction problems below.
Importance of buildings in the energy ecosystem: The building
sector accounts for more than 40% of the total energy consumption
in the United States [42]. Therefore, improvements in the energy
efficiency of buildings have the potential for a large economic and
environmental impact. Hence, efficient control of buildings that
balances economic, environmental and occupant comfort goals is
an important problem [8]. Also, buildings have significant potential
to be utilized in grid planning and operation through demand-side
management because of them being the primary drivers of electricity
demand. Residential and commercial buildings consume 75% of
all U.S. electricity and drive 80% of peak demand. Demand-side
resources such as energy efficiency measures in buildings not only

save energy and reduce costs for the owner or occupant, but also
can lower electricity system costs for all customers by reducing
energy and capacity needs. Moreover, energy efficiency measures
can be combined with grid-interactive strategies such as demand
response (DR) and distributed energy storage to further reduce and
change electricity consumption to minimize consumer and electricity
system costs, relieve system stress, deliver grid operational benefits
through ancillary services, and integrate variable renewable energy
resources.
Stakeholders: In the last couple of decades, various stakeholders
such as building energy managers, utility companies, policy-makers,
and researchers have identified, demonstrated, and advocated several
data-driven solutions to achieve the goals of energy and cost effi-
ciency. Some of these solutions include demand response (DR) [33],
pre-cooling or pre-heating [40], optimal supervisory control [39],
energy benchmarking [11] and on-site renewable generation [35].
However, almost all of these solutions require a predictive mathe-
matical model of energy consumption as an essential element. For
instance, the design of effective DR schemes for providing grid
services requires a quantification of how energy demand in a build-
ing changes on a per appliance/load-type basis, and how occupant
comfort is tied to the demand. Pre-cooling, pre-heating, and optimal
supervisory control of HVAC systems involve optimization of set-
point temperatures, which in turn requires an understanding of the
relationship between set-point temperatures, energy consumption,
and occupant comfort. Energy benchmarking involves identify-
ing anomalous behavior in energy consumption patterns to identify
energy wastage, and hence requires a model of nominal energy con-
sumption, a process also known as baselining. Optimal sizing of
on-site renewables requires a quantification of the building’s demand
profile.

A building energy modeler forecasts a building’s baseline en-
ergy consumption, but also takes extraneous factors such as weather
conditions, variability in power generation from renewable energy
sources, or the building occupants’ preferences and comfort levels,
for aligning their model predictions with evolving real-world condi-
tions. Understandably, modeling energy generation or consumption
will ultimately not be purely a matter of focusing on technical dimen-
sions but will also be driven by changes in social behavior, economic
indicators, and environmental factors like emissions and weather.
The glue that binds these diverse dimensions is the availability of
data from many sources, such as satellite imagery, building energy
consumption data, smart meters, weather sensors, open data sources,
or even social media data. Such data is dynamic and reflects relevant
changes in socio-environmental factors as conditions change. In an
ideal scenario, energy modelers will be able to dynamically update
their models based on information extracted from heterogeneous
data and re-train and re-deploy them whenever and wherever neces-
sary. The consumer of these prediction models are building or grid
operators who need to make proactive or real-time decisions based
on their observation and also based on the predictions made by these
models.
Data characteristics: The data collected from a building manage-
ment system can be classified in general [36] as Controls: human-
provided operating inputs that at any given time are set either using
a pre-programmed logic or manually by the building manager. Some
examples of such variables are zone set-point temperatures, duct
static pressure set-point, and mode of operation of HVAC (heat-
ing/cooling). Exogenous inputs: inputs such as outside weather
and zone occupancy status, which drive the energy consumption in
a building, but cannot be controlled. Internal variables: operating
conditions in the building, that are a consequence of the choice of
controls. This includes internal variables such as zone temperatures,
airflow rates in HVAC systems, return and supply temperatures of
water and air, etc. Consumption: measurements indicative of per-
formance such as heating and cooling demand, active and reactive



power consumption, etc.
Prediction Problems: The modeling problem that experts typi-
cally consider involves predicting the total building HVAC thermal
demand (falling under category consumption) as well as zone tem-
peratures (falling under category internal variables) as a function
of controls, and exogenous inputs. More recently, the evolution
of smart buildings and cities, as well as distributed renewable gen-
eration resources, is driving a paradigmatic shift in the operation
of the future energy ecosystem - requiring a tighter collaboration
between the different energy infrastructures. With building energy
efficiency being one of the lowest-cost energy resources, power grid
utilities and operators are increasingly engaging smart buildings and
communities in energy efficiency programs, with investments on
the order of $6B/year [31]. Tighter coupling between the various
energy infrastructures will be driving innovations in the nature of
the energy modeling work, such as understanding spatio-temporal
energy flexibility offered by a community of smart buildings. This
might be better understood by describing a use case that leverages
data driven models to minimize the cost of energy for a building.
This use case involves optimizing the set-point temperature of the
building to achieve this objective, since set-point temperatures have
a significant impact on building energy costs. There are two spe-
cific ways in which set-point optimization helps minimize energy
costs. 1. Reduction in energy consumption by utilizing the set-point
flexibility provided via building code (reduce set-point in heating
mode, increase in cooling mode), 2. Time-shifting of demand by uti-
lizing building thermal capacity (pre-cool or pre-heat when energy
is cheaper).

3 ANALYZING THE TRUST BOTTLENECK

A persistent challenge in building energy modeling is the depen-
dency of energy consumption on a large number of factors such
as set-point temperatures, weather, occupant behavior, underlying
control systems, building layout and equipment efficiencies. A clas-
sic approach to solving this problem is to retrieve insights from
physics-based models that account for the thermal characteristics of
the buildings and system dynamics. The EnergyPlus tool [13] is a
representative for physics based modeling and has been used widely.
However, the main limitation of these models as that they involve
solving equations with physical parameters that are specific to the
buildings at hand and therefore there is usually a great effort spent
on gathering sufficient information about the physical features of
the environment (building materials, heat transfer constants, bound-
ary conditions, etc.), which can be time consuming and expensive
to obtain. In this context, the availability of fine-grained spatio-
temporal data by the rapid penetration of information technology
(IT) in today’s buildings [30] provides an opportunity to address the
challenges associated with physical models. Therefore, data driven
modeling paradigms such as linear regression, support vector regres-
sion, and artificial neural networks and deep learning are finding
application in building energy modeling use cases [36, 42]

However, despite the presence of several publications in recent
years that have set up the theoretical foundations of data driven
modeling and advanced optimization based control algorithms as
well as demonstrated their value on simulation test-beds and ex-
perimental systems, the state of the practice in this domain is still
lagging behind. Building operators still use conventional rule based
methodologies to operate them. This is despite the rapid penetration
of Building Management Systems (BMS) which automate the oper-
ation of buildings. BMS providers such as GE, Siemens, Honeywell
and Johnson Controls encapsulate these rules in their BMS offerings
and provide an automated way of implementing them via their pro-
prietary hardware and software platforms. These rules are often a
sequence of semantic operations such as “if-then-else” constructs.

A key reason for this difference between the state of the art and
state of practice in this domain is that operators of buildings as well

as the providers of the BMS solutions are generally unwilling to
completely trust, what appears to them a ‘black-box’ decision mak-
ing unit that is difficult to be explained in terms of the operating
framework that they are used to. For example, the output of an
advanced Predictive controller can be a sequence of valve opening
positions which is the solution of a dynamic optimization problem.
However an operator on the ground might have been trained to oper-
ate these valves based on some situational awareness (e.g. outside
temperature, indoor temperature, occupant complaints, safety needs
etc.). This trust issue is further supported by findings from the sur-
vey [17], which suggest that operators and managers of commercial
buildings view technology as a favorable driver to enable and sup-
port their sustainability missions. However, building operators might
be resistant to deploying a technology which is opaque and whose
working mechanism is not clear to them. This becomes especially
important in the context of the 3-30-300 rule which specifies that the
highest priority should be given to mitigating occupant complaints.
The survey also provides some strategies to address the trust barrier.
The most important recommendation is the need to include building
operators as partners for technology penetration, by including their
inputs in all phases such as design, testing and commissioning.

4 HOW VISUAL ANALYTICS IS CURRENTLY USED

In this section, we describe some of the existing visualization ap-
proaches for addressing energy modeling and model consumption
tasks.
Energy consumption in buildings: Human activities are one of the
primary drivers of power consumption in buildings. A comprehen-
sive collection and analysis of power consumption is required to
identify situations where residents should change their habits [9].
Commercial buildings in the US consume 19% of the electricity
and the current studies have limitations in that, they are exclusively
focused on households, and only very few focus on the workplaces,
where energy dashboards can be used for monitoring consump-
tion [41].
Ecological and behavior change: Several researchers have focused
on ecologically responsible behavior [19, 25]. The focus areas can
be categorized as follows: Developing persuasive displays: Citing
that none of the existing Ambient persuasive displays seem to have
any long- term persuasive effects, one research work argues that this
effect could only be enabled by involving providers and potential
users in the design process of an ambient persuasive display [24].
Consumption awareness: Since behaviors often get transformed
to habit, researchers have studied how energy consumption gets
affected by environmental consequences of human activity [23].
HVAC Systems: 80 to 90% of the yearly growth of industrial en-
ergy consumption can be attributed to Heating ventilation and Air-
conditioning systems [34]. In US alone HVAC systems account
20% of global and 70% of the nation’s electricity. There is a need
to understand energy consumption patterns to achieve energy effi-
ciency. To this end, there has been some emphasis for the need to
combine data mining & visualization techniques in order to convey
the information without cluttering the dashboard which could only
be interpretable by expert user group [37].
Building energy management: It is not an easy task to determine
whether the past energy consumption was really necessary or just
wasted [20]. Drawbacks in the current visualizations that either
display highly technical information familiar to expert users like
building engineers for tuning performance or simplified displays of
aggregated energy consumption over time for non-experts like the
one on the electric bill and combining these creates confusion [3].
Energy performance of large building portfolios is challenging to
analyze and monitor, as current analysis tools are not scalable or
they present derived and aggregated data at too coarse of a level
[4]. Building Information Management(BIM) domain still remains
largely unexplored by the visualization community [21].
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5 TRUST-AUGMENTED VISUAL ANALYTICS

In this section, we speculate on how visual analytics (Figure 3) can
help energy modelers and operators increase their trust in the data, in
the predictive models, and ultimately, in the inferences and decisions
derived from the data-driven predictions.
Trust in the data and the prediction generation process: For en-
ergy modelers, trust in the training data is a prerequisite for trusting
any of the downstream modeling steps. A visual analytic method
should be able to capture this process of data generation and subse-
quent expert ideation and sensemaking that can inform model devel-
opment processes. The challenge here is in handling heterogeneous
and multi-scale data sets that can come from disparate sources, like
satellite imagery, public building records, sensors, etc. This presents
a key opportunity for visual analytic techniques to semantically inte-
grate high-dimensional data [26, 29] from the different sources for
faster and trustworthy calibration and prediction of building energy
consumption patterns. The data here is of very high dimensional-
ity, where each data source comprises tens or hundreds of features,
many of which might not be relevant for analysis. This challenge
can be addressed by developing interactive tool that ingests data
from heterogeneous sources, combines statistical methods with visu-
alization for presenting interesting correlations and clusters, and lets
modelers semantically integrate diverse pieces of information for
understanding the causal factors behind increasing and decreasing
energy building energy consumption. This will further encourage
participatory model development [18], where energy modelers and
data scientists can engage in collaborative sensemaking using visual
analytics interfaces.
Trust in the model calibration metrics: Accurately modeling an
energy system is crucial for long term and short term energy pre-
diction, along with anomaly or adversarial activity detection within
the energy system. In many such cases, traditional accuracy metrics
used to capture accuracy of machine learning models are insufficient
for characterizing how well these models can capture expert knowl-
edge [7]. Chakraborty et al. proposed a set of metrics relevant to
short term and long term energy prediction [7], applied to machine
learning for building energy consumption. Although these metrics
are available in the literature, it is hard to get an unified message
from those metrics regarding the performance of the energy model.

This asks for inputs from experts with domain knowledge, such as
energy modelers, and that is why interactive visual comparison of
various aspects of model performance can help experts build trust in
model performance and at the end, select the models that best reflect
their mental model about energy demand and consumption.

Trustworthy communication in cyber-physical systems: With
the recent advances in data-driven modeling in cyber-physical sys-
tems, it is being increasingly recognized that information shar-
ing across systems and human operators can drastically improve
network-wide security and trustworthiness of the decision-making
processes by operators. There are challenges visual analytics tech-
niques need to address for facilitating such inter-operator and inter-
system communication. First, the scale and complexity of the in-
dividual systems makes it extremely challenging for operators to
monitor and operate such coupled infrastructures. Second and more
importantly, high-fidelity models of the component physical systems,
though accurate, are often not intelligible enough for cross-domain
operators. This impedes the transfer of knowledge across operators
which is essential for understanding the dependencies across sys-
tems and proactively planning for contingencies. For example, let
us consider a connected buildings-grid-cyber infrastructure, where
buildings are used as flexible energy resources to improve grid re-
siliency.

Visualization techniques can ensure that the information exchange
between the operators of buildings and grid is mutually intelligible
and ensure secure and optimal operation of the connected infrastruc-
ture. While building models can be developed to be of arbitrarily
high accuracy using data-driven approaches (e.g., machine learn-
ing), such models carry little value in grid operations. To address
these problems, we posit that the expressive power of advanced,
high-dimensional data visualization techniques will be effective in
exposing the hidden dependencies across model outcomes from dis-
parate domains. These visualizations can be presented to both grid
and building operators, through interactive user interfaces. Using
their domain knowledge, operators will incorporate their feedback
about the observed patterns and correlations and help separate the
signal (meaningful correlations, groupings) from the noise (e.g., spu-
rious correlations). This will result in i) a simplified and intelligible
model for operators across both domains, leading to greater trans-
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Figure 4: Impact of the decision choices of a building operator on
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parency in knowledge-sharing and efficiency in operating the grid,
and ii) a simplified functional relationship that represents a physical
model that can then be leveraged for down the line optimization
framework requirement.
Trust in inferences from black-box predictions: Outcomes from
predictive models have to be ultimately communicated to building
and grid operators who are traditionally used to rule-based models.
The challenge here is to develop techniques that help explain model
decisions and enable integration of expert feedback so that opera-
tors can generate actionable and trustworthy inferences from the
model predictions. An example of an inferential reasoning scenario
is the use of multi-criteria decision-making [22] to address trade-
offs among energy consumption minimization, occupant comfort
maximization, satisfying the grid services to the maximum possible
extent, and maximizing system resiliency and reliability . Compara-
tive visualization techniques [15] can be used where visualization
will help operators take real-time decisions directly affecting the
functioning of the grid. In a recent work [28], the authors investi-
gated a multi-criteria decision problem for grid-interactive efficient
buildings in which the building operator monitors the streaming
data building sensors to decide which (and how many) devices to
commit for a load curtailment grid service, while minimizing any
adverse impact on the building occupants. A stochastic multi-criteria
decision algorithm was used to assign priority ranks to each device
based on the (anticipated) impact on end-user comfort and the re-
sulting amount of load curtailment - measured via respective scores
s1 and s2. Fig. 4 shows how the different design choices - such as
the weights placed on each criteria, w1 (for comfort) and w2 (for
curtailment), as well as the number (n) of devices to commit to
grid service - impact the building performance measured via the
different criteria metrics. The fundamental trade-off between the
different control performance objectives make the real-time decision
making a challenging problem for the building operators. Adopting
and extending visual analytic approaches for multi-criteria decision-
making [15, 32] can help synthesize explainable inferences from the
streaming sensors data and enhance operator’s trust in the real-time
decision support systems.

6 CONCLUSION

In this paper, we have presented an analysis of the trust gaps that
exist in the energy modeling when different stakeholders, like mod-
elers and operators, want to leverage the data-driven predictions
for accurate forecasting and decision-making. The problems and
potential solutions we identified result from a collaboration among
energy modelers and visual analytic researcher and can serve as
a guideline towards embracing visual analytics-based technologi-
cal advances in the energy sector, which is increasingly becoming
the focus of national and international investments for attaining
sustainable development goals.
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