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ABSTRACT

Trust is a fundamental factor in how users engage in interactions with
Visual Analytics (VA) systems. While the importance of building
trust to this end has been pointed out in research, the aspect that
trust can also be misplaced is largely ignored in VA so far. This
position paper addresses this aspect by putting trust calibration in
focus – i.e., the process of aligning the user’s trust with the actual
trustworthiness of the VA system. To this end, we present the trust
continuum in the context of VA, dissect important trust issues in
both VA systems and users, as well as discuss possible approaches
that can build and calibrate trust.

Index Terms: Human-centered computing—Visualization—
Visualization theory, concepts and paradigms; Human-centered
computing—HCI theory, concepts and models—Visualization de-
sign and evaluation methods;

1 INTRODUCTION

In one of the most cited paper on Visual Analytics (VA) [32], Keim
et al. proposed that VA should integrate scientific disciplines to
improve the division of labor between human and machine. By inte-
grating human expertise through the human-computer interaction,
VA systems aim to enable data experts to explore data graphically
and generate insights more easily. However, as users grow dependent
on the VA systems, new uncertainties and errors that the VA systems
bring in might expose users to the risk of generating ill-informed
insights. This would be detrimental for VA system – if users become
aware of such uncertainties and errors, they might lose their trust
in the VA system and stop using it; if users stay blind to the uncer-
tainties and errors, the ill-informed insights they produced might
cause them to make problematic decisions. Such issues coincide
with previous trust research – trust is increasingly relevant under the
conditions of uncertainty presence in the trustee (VA system), vul-
nerability to risk for the truster (user) and dependence relationship
between the truster and the trustee [33].

Previous research on trust in visualization has mostly focused
on the idea of trust building – essentially to improve users’ trust in
VA systems [42, 57]. However, VA systems are designed always by
human and subject to potential human errors and subjectivity. Fur-
thermore, one of the fundamental ideas in VA – human-in-the-loop
– emphasizes that human should supervise and steer the analytical
process to generate trustworthy insights. Therefore, it is necessary
and positive for users to maintain a healthy skepticism towards the
VA system. In this position paper, we consequently propose that cal-
ibration of the appropriate trust level is equally important as, if not
more than, trust building. With these concepts, we mean concretely:

Trust building increases the trust a user puts in a VA system
through various means, such as making computations transparent
through visualization (showing what the system is doing), providing
explanations for results (showing why the system is doing it), and
allowing the user to interject and reparameterize at any point.
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Trust calibration aligns the trust put into a VA system by the user
with the system’s actual trustworthiness through various means, such
as communicating uncertainties, providing visual cues and previews
of the end result the user can expect from the system, and indicating
analysis paths that have shown to work for similar data in the past.

In the following Sec. 2, we first lay out the trust continuum
as a basis for the discourse of trust building and trust calibration.
Then, Sec. 3 dissects potential trust issues in both VA systems and
users and outlines possible approaches to build and calibrate trust.
Sec. 4 subsequently connects some emerging VA approaches with
the previous discussions of trust to inspect how they might bring new
perspectives for the trust dynamics in VA. At last, Sec. 5 concludes
this paper with some overarching insights and recommendations for
future research regarding trust calibration for VA.

2 CONTINUUM OF TRUST

Trust building and calibration deal with trust issues from different
but complementary angles. Trust building emphasizes increasing
users’ trust level in VA systems, while trust calibration focuses on
avoiding and mitigating misplaced levels of trust. This difference
is illustrated by the trust continuum shown in Figure 1: where trust
building aims to increase the trust level from left to right, trust
calibration aims to align the trust from bottom to top. The elements
of this continuum are introduced below.
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Figure 1: The trust continuum extended on the model of Cho et al. [8]

2.1 The Foundation: Trust and Trustworthiness

The definition of trust varies in different contexts, but the general
concept of trust is defined as “the belief that the trustee will act in
the best interests of the truster in a given situation.” [41]. This cap-
tures the dynamics of the trustee and truster in a social relationship.
However, this changes in the context of VA, as one of the two trust
parties, the VA system, is a largely non-social actor.

In the situation of VA, the primary goal, i.e. the “best interests” of
the truster (user), is to “identify and visually distill the most valuable
and relevant information content.” [32] Therefore, we can adapt the
definition of trust in the context of VA as the truster (user)’s belief
that the trustee (VA system) will help them correctly identify and
visually distill the most valuable and relevant information content.

Note that trust is slightly different from trustworthiness. While
trust is a belief that is not necessarily based on observed evidence,
trustworthiness is the verified and objective trust based on obser-
vations [62]. In the context of VA, we can think of trust as such
belief that users might have about the VA system and that is possibly
even preconceived and formed without actually ever having used the
system. Whereas trustworthiness is based on the observation that the
VA system helped users to achieve their goals and the expectation
that the VA system will behave consistently in that regard.



2.2 Levels of Trust: Distrust, Untrust, and Undistrust
In addition to the state of full trust, there are three more levels of
trust: distrust, untrust, and undistrust.

Distrust measures an active form of negative trust where the
truster believes that the trustee will actively work against their in-
terests [41], which can lead to disuse in digital systems [36]. When
users distrust a VA system, they may for example have found that
the VA system repeatedly produces inaccurate visualizations. While
this may not be “malintent” by the system or its authors – e.g., in
cases where complex data standards are not fully supported [59] – it
can still hinder carrying out an analytic task consistently and free
of errors. In the worst case, this causes users to no longer deem the
system trustworthy and thus abandon it. On the brink of distrust,
trust building is vital, as users are likely to disuse the VA system.

Untrust, on the other hand, indicates a state where the truster is
not fully confident in the trustee, while being at the same time still
inclined to trust it for the most part. For VA systems, it is natural
for users, especially experts, to be alert and consider if there are
any errors in the data, implicit assumptions in the computational
process, or overplotted information in the visual representation. In
particular, when users are not yet fully acquainted with a VA system,
such considerations might help them to be aware of the implications
of their analytic choices they may not yet be aware of.

Undistrust means the lack of trust [7], where the truster becomes
suspicious of the VA system, but has not fully distrusted it. Com-
pared to untrust, undistrust leans more towards the negative side,
where the truster contemplates more to distrust the trustee. In the
state of undistrust, users have serious doubts about the VA system
and its trustworthiness, but they can still perform most of their in-
tended tasks and generate some insights when using it with caution.

2.3 Misplaced Trust: Mistrust and Misdistrust
Mistrust and misdistrust denote situations where trust or mistrust is
misplaced compared to the trustee’s actual trustworthiness. In other
words, the level of trust brought forth by the truster and the trustwor-
thiness of the trustee are miscalibrated and the user’s expectations of
the system do not align with what the system can actually provide.

Deriving from the notion of misinformation, mistrust is often
called misplaced trust [40]. It arises when the truster gives a positive
estimation of the trustee that later proves to be misplaced. This is
particularly problematic, as mistrust can lead to misuse, i.e., users
generating inaccurate results and gaining false insights, which works
against their interests of using VA systems. Furthermore, later when
users find out such mistakes, it is more possible for them to feel
“betrayed” or “cheated” by the VA system and start distrusting it.

Defined as misplaced distrust, misdistrust is the counterpart of
mistrust, where a truster distrusts a trustworthy trustee [43]. Mis-
distrust originates from miscommunication or misunderstanding
between the user and VA system. Misdistrust is detrimental to the
interaction, as users might disuse the VA system, when in fact the VA
system can be trusted. Once misdistrust has formed, it can eliminate
the possibility of the VA system to later “redeem” itself.

Along the same lines, de Visser et al. proposed a trust calibration
model between the level of trust and the actual trustworthiness [12].
When the trust level is higher than the actual trustworthiness, they
speak of over-trust, whereas a lower trust level than the trustwor-
thiness is termed under-trust. Note that there is a key difference
between over-trust/under-trust and mistrust/misdistrust. Over-trust
and under-trust can refer to any situation where the user’s trust is
higher/lower than the actual trustworthiness of the VA system, even
if not by much. This would be the case, when users generally untrust
a system that may in fact not be fully trustworthy, but that could still
be used with caution – and whose actual trustworthiness is thus on
the undistrust level. However, mistrust and misdistrust pinpoint the
specific problematic scenarios where users trust or distrust a system
that should not be trusted or distrusted, respectively.

2.4 The Bounds of Trust: Cooperation Threshold and
Limit of Forgivability

The concepts of “cooperation threshold” and “limit of forgivability”
were introduced by Marsh and Briggs [40]. They delineate trust and
untrust, as well as distrust and undistrust, respectively.

Cooperation threshold refers to the point beyond which trust
is established and the two parties will jointly proceed towards the
same goal [40]. In a social context, cooperation means the action
of different people working together, whereas in the context of VA
system and the user, we define cooperation as fluent, reliable, and
convergent interaction between system and user that work towards
jointly identifying and distilling valuable and relevant information.
Note that human usage of a VA system alone does not constitute as
full cooperation, but that it requires the mutually dependent nature
of the iterative human-in-the-loop interaction with each other.

Limit of forgivability refers to the limit beyond which the trustee
is truly distrusted and can be considered only as acting against the
truster’s best interests. According to Marsha and Briggs [40], this
limit determines the worth of the trustee entering into redemption
strategies to seek forgiveness from the truster. In the context of VA,
we can see this as the limit beyond which a deeply disappointed user
would abandon and disuse a VA system.

3 SHOULD I TRUST, AND WHAT TO TRUST?
VA provides users with powerful tools for understanding and rea-
soning. However, VA systems also confront users with computed
results and mined patterns that stand in conflict with the user’s pre-
vious knowledge, experiences, and beliefs. This leads to a series
of questions: “Should I trust myself or the VA system?”, “How
much should I trust the VA system?”, and “Which part of the VA
system should I trust more?” To answer these questions, analysts
must know about the strengths and the weaknesses of both sides –
the VA system and themselves – to know whom to trust in which
situation. Thus, the following dissects potential trust issues on both
sides, provides pointers to existing research for each, and details
what can be done to build and calibrate trust in each case.

3.1 Should I Trust the VA System?
VA systems are designed by humans and therefore subject to po-
tential human errors and subjectivity. Moreover, VA systems rarely
have access to the “big picture” of the context behind a given ana-
lytic task. For example, a VA system does not know that reporting a
computed result to the 10th digit after the comma miscommunicates
a level of certainty and detail that is not warranted when averaging
5 roughly estimated numbers, leading to mistrust/over-trust in that
result. In this section, we dissect how trust issues emerge in different
parts of VA systems – data, computational process, visualization,
and interaction – as well as what can be done to address these issues.

3.1.1 Should I trust the data?
“Garbage in, garbage out.” This principle captures the observation
that the quality of the input to a digital system is directly reflected in
the quality of the produced output. It also holds true for trust in VA:
if the input data to a VA system are not trustworthy, then this lack of
trustworthiness will propagate all the way to the derived insights.

As much as people label datasets as “raw”, such data are still
collected through certain technical and social lenses. The “raw data”
we obtained “are always already cooked and never entirely raw” [18],
and thus raise questions of trust. National population census data in
some countries are collected through investigators going into every
household and might be subject to various human errors. Natural
sciences researchers place sensors with varying accuracy in locations
that they deem as reasonable to gather data for their research. Tech
companies collect user data through their own algorithms, selecting
data that are relevant to their field of business, easy to access, and
legal to be collected. As such, even the data in their most original



forms are conceived before the collection process and limited by
various technical and social constraints. When such conceptions
and constraints are not communicated to the users of the data, in-
consistencies in the “raw data” can be easily overlooked and lead to
mistrust, or even be misconstrued as intentional manipulations and
lead to misdistrust.

In a review paper on trust in digital information, Kelton et al.
concluded that people tend to put more trust in accurate, up-to-date,
complete information without deception and distortion, which is per-
sistently obtainable with responsible methodology [33]. Therefore,
to calibrate the trust to be placed on the input data, the inclusion
of related information about the data source and communication of
uncertainties in the collected data are essential [59]. Such metadata
can inform users about where data discrepancies stem from and
make users aware of the impact these discrepancies have on their
analysis. Metadata make the process transparent by which the data
were gathered and further processed. However, they are not proof of
this process being the most suitable and they rarely explain why a
particular process was chosen. Adding this reasoning behind them
would further help to judge the data’s trustworthiness.

Yet we also need to communicate the metadata to the user to
make a judgment of trust. Uncertainty visualization is a frequently
mentioned approach to communicate quantitative uncertainties [4].
In theory, communicating such metadata should allow for better
judgment of the data and thus of any processing result based on that
data. In practice, though, it turns out that most users have a hard
time to reason with uncertainties, let alone to parse the provided
visualizations [29]. As for qualitative uncertainties originating from
the process of data gathering and preprocessing, communicating
the data provenance is an established approach [23]. Given the
data provenance reflects a systematic and responsible methodology
behind it, it has the potential to instill trust in users. In addition, such
openness about the process behind the data can give an impression
of “we have nothing to hide” and increase the trust level in general.

3.1.2 Should I trust the computational process?

The computational process in VA systems is like a black box ingest-
ing data and producing results to be subsequently visualized. As
such, it provides little to no internal status to understand its inner
workings. Having little insight in and understanding of the computa-
tional process, it is almost inevitable for the users to start assuming
“intents” of a VA system – likely negative ones. Harboring such
assumptions, users will actively look for instances where the system
appears to work against them, which will eventually lead to distrust.

Many interactive visualization tools emphasize their integration
with computational software such as MATLAB and R. However, as
Mühlbacher et al. pointed out, such computational software is usu-
ally used as a black box that runs in isolation, providing no output
other than the final result once it is ready and defeating the purpose
of a visual-interactive data analysis [48]. More importantly, users
have very limited knowledge of what is going on in the algorithms
behind the scenes and limited agency over the process. When errors
arise, users rarely have the option to probe into the computational
processes to inspect the potential causes, therefore being unable to
verify what went wrong and calibrate their trust level accordingly.
A user trust study in intelligent systems by Holliday et al. found a
similar pattern that without explanations of how the systems work,
user trust might deteriorate over time, which is why the perceived
transparency of the system becomes increasingly important for users
to trust it [27]. Based on currently available computation infras-
tructure, Mühlbacher et al. subsequently proposed four different
strategies to achieve user involvement [48], which in turn provide
knowledge about the algorithms, insight into how they run, as well
as agency to users to calibrate their trust levels.

In addition to user involvement and understanding, Friedman
and Nissenbaum pointed out that technical and social constraints

can transfer into issues in computer systems [16]. In the context of
computational processes in VA, algorithmic bias is a notable issue.
Algorithmic bias touches on systematic errors in the algorithms that
might create unfair results. Danks and London gave some good
examples on such issues – the training data might be skewed due
to moral or legal reasons, or the algorithm could be designed to
counter overfitting noisy data but then ending up more biased in
other scenarios [10]. If results from such biased algorithms are still
consistent with the users’ expectations, they might end up mistrust-
ing an actually untrustworthy computational process. It is therefore
important to at least identify and communicate potential compu-
tational bias from the algorithms to calibrate trust. To cope with
algorithmic bias, Cabrera et al. developed FAIRVIS [6] to aid dis-
covering intersectional bias in machine learning and creating more
equitable algorithmic systems. Such tools can be helpful to uncover
and communicate algorithmic biases, helping to avoid mistrust.

3.1.3 Should I trust the visualization?

Visualization displays the results from the computational process to
make it easier for the human user to gain insights. To do so, most
VA systems provide a limited selection of different visual mapping
and rendering techniques, and such techniques are very often not an
accurate one-to-one mapping from the data space to the view space.
While this is only natural in the age of big data where we have many
more data points to plot than available pixels on our screens, it still
misconstrues the data and is thus a potential cause of distrust.

Many visualizations are visually pleasing, which can help to build
initial trust, especially with inexperienced users. However, if such
visually pleasing graphs do not communicate the underlying data
accurately and provide effective means to discover insights, such
initial trust will sooner or later prove to be mistrust and eventually
lead to distrust. It is therefore important to calibrate trust through
providing some form of guidance that can help to avoid mistrust.
Recommendation systems such as Tableau’s “Show Me” [38] and
Moritz et al.’s Draco [47] can to some extent avoid “visualization
design mirages” [45] by incorporating design knowledge and guide-
lines in their recommendations. Furthermore, visualization linting
can help to uncover improper visual mappings. Similar to code
linting, visualization linting searches for common visualization mis-
takes and automatically highlights them to help users recognize and
potentially correct them [44].

The rendering of visualizations can also be an important trust
factor. On one hand, technical constraints like low resolution and
inadequate contrast might make it hard for users to clearly perceive
the visualization, hindering them from gaining accurate insights [5].
On the other hand, some rendering techniques simply struggle to
put all information in the available display space, which can lead
to important information being hidden at subpixel resolution. To
nevertheless point the user towards this information, Luboschik et
al. have shown guidance to be a valuable means [37]. As they
highlight display regions in which data at subpixel level deviate
from the currently shown view, the VA system is transparent about
its rendering limitations and users know where to zoom-in to find any
deviations. This transparency aligns expectations and thus actively
calibrates the trust in the VA system.

3.1.4 Should I trust the interaction?

Usability and user experience of the interaction with a VA system are
important for the trustworthiness of it. Coherence is especially cru-
cial for users to understand and trust the VA system, as discrepancies
in the interaction might trigger users to scrutinize a digital system
further [55]. When users take actions in a VA system, they have
conscious or subconscious expectations of the system’s reactions.
Discrepancies between these expectations and the provided reaction
pose a threat to a VA system’s trustworthiness. A framework that re-
flects different forms of such mismatch is Tominski and Schumann’s



conceptual separations, spatial separations, and temporal separations
regarding interaction costs with a VA system [66].

Conceptual separations concern the misalignment between the
mental model that users have about the system, the implementation
model the system adheres to, and the presented model of its interface.
If the users’ mental model does not match with the presented model,
they might subsequently internalize such mismatch as an error in the
system, pushing users to scrutinize and even distrust.

Spatial separations relate to the spatial placements and distances
between different interactive elements and system reactions. This is
problematic when the user’s interaction and visual response from the
system are inconsistent. Such inconsistency between users’ spatial
expectations and the actual spatial separations in the interface would
make it harder for users to understand the action-effect causality of
the VA system, causing confusion at best and misdistrust at worst.

Temporal separations reflect the latency between a user’s action
and the system’s visual response. Users might have some expec-
tations of the duration of certain internal processes, and when the
actual latency drastically deviates from their expectations, they will
become suspicious of the system and underlying process.

For example, in coordinated multiple views, users’ actions in one
view are expected to influence several others. Yet, if this influence is
not clearly represented across the different views (spatial separation),
or the actions take too long to propagate to other views (temporal
separation), users might not be able to understand which of their
actions impacted in which ways the other views and misinterpret the
underlying logic (conceptual separation), leading to misdistrust.

A way to counter such trust miscalibration is to communicate the
system’s response and latency regarding users’ possible interactions.
For conceptual separations, scented widgets [70] can serve as a pre-
view to align users’ expectations of their actions with the reactions
from the systems by adding cues to the corresponding interactive
elements. For large spatial separation between users’ action and
systems’ reaction, visual links [65], arrows or highlights can enable
users to follow the action-effect causality and instill trust. Regarding
temporal separations, providing estimates of computationally inten-
sive actions in either textual or visual forms can help to calibrate
user expectation and trust. However, inaccurate estimates can also
create even more discrepancies and induce distrust.

3.2 Should I Trust Myself?
When users interact with VA systems, variations in their perception,
knowledge, judgment, and situational state influence their actions.
These factors are essential for trust calibration: On one hand, they
may be the reason users misplace their trust or distrust in the first
place – e.g., because of their confirmation bias, users trust results
more if these align with their beliefs. On the other hand, they can
interfere when trying to communicate uncertainties or algorithmic
details – e.g., when change blindness makes it hard to follow compu-
tational updates. Hence, in this section, we dissect how these human
factors are related to trust calibration and which means have been
proposed to alleviate the issues they cause.

3.2.1 Should I trust my perception?
Perceptual factors, such as visual expectation, visual memory as
well as visual attention, are important in visualization, as it is the
foundation of human sensemaking from large and often complex
datasets. To calibrate trust, we need to consider if one can perceive
visual information true to what the VA system present. To this
end, not only should we be aware that there can be a spectrum
of perceptual abilities among users, for example, different degrees
and types of colorblindness, dyslexia, or autism. We also need to
consider that human perception is far from optimal and error-free,
as it is evident by the broad range of visual illusions.

Among the perceptual abilities, visual abilities are relatively well-
researched. Thus, it is well-known that sensitivity to color dete-

riorates with age and colorblindness can also seriously limit the
quantity and quality of information we can extract from visual rep-
resentations [60]. Many tools have thus put color perception into
consideration to make sure one can trust what one perceives. For
example, ColorBrewer specifically enables choosing only colorblind-
safe color scales [21]. VisCheck and Daltonize show how a visu-
alization or user interface looks like for users with different kinds
of colorblindness and provide corrections [15]. Other perceptual
differences like synesthesia or dyslexia have not been the focus of
dedicated studies in visualization. However, they can be expected to
also impact the perceptual process in VA systems, as underlined by
recent work on a “synesthetic color palette” [56].

Regardless of individual predisposition, perceptual errors such as
change blindness or line width and sine illusions arise for any user
perceiving visualizations. To achieve trustful visual communication
between the VA system and the user, they thus need to be consid-
ered. Change blindness occurs when people do not notice changes
in visible elements of a scene. In the context of VA, users might not
be aware of how an animated visualization changes or how a static
visualization updates. This in turn makes it hard to judge the trust-
worthiness of the system with up-to-date information. Nowell et al.
discussed possible solutions using morphing, crossfading, and wire-
frames to draw attention to regions of change in the view space [50].
In addition, due to human’s tendency to perceive distance between
curves as the minimal distance rather than the vertical distance, line
width and sine illusions are widely discussed in statistical graphics
literature, especially when representing areas between two curves.
Hofmann and Vendettuoli proposed Common Angle Plots to address
line width illusion [26], and VanderPlas and Hofmann demonstrated
possible solutions to counter the sine illusion [67].

3.2.2 Should I trust my knowledge?

Running an analysis with a VA system, users internalize the result-
ing information they yield from the system through their existing
construct of knowledge. Users with different expert knowledge un-
derstand and interact with VA systems differently [49]. In particular,
a lack of knowledge leads to uninformed actions that potentially
cause misunderstanding of the systems and miscalibration of trust.

Domain knowledge about the analyzed dataset is vital for sense-
making in VA systems. The human sensemaking process is based
on framing the data presented by the VA system with their existing
knowledge construct. As Klein et al. pointed out, “sensemaking is a
process of framing and reframing”, that fits presented data into the
analysts’ knowledge construct [34]. On one hand, users are inclined
to trust data that fits with their framing and distrust one that does
not, which can lead to mistrust and misdistrust. On the other hand,
trust calibration is also weakened when users do not have enough
domain knowledge to judge if they should trust the outputs from the
VA system or their own framing. Implementing a form of Analysis
of Competing Hypotheses (ACH) can be helpful for mitigating such
issues of data-specific domain knowledge. ACH refers to an analyti-
cal process to aid decision-making regarding issues with different
alternative explanations or conclusions [24]. Enabling users to ex-
plore several analytical paths can help to validate different framing
of the data and ensure a calibrated level of trust.

In addition to domain knowledge, users’ knowledge, or expertise
level about VA and the specific VA system has an important impact
on the users’ ability to take appropriate analytical actions. Lack
of knowledge about different computational processes might leave
them in a trial-and-error mode when aiming to choose one that is
consistent with their intentions; insufficient navigation skills around
the VA system might make it increasingly hard for users to discover
different options and views that would help them to generate more
insights; inexperienced users might not be able to spot errors and
understand issues arising in the system and take actions accordingly.
These issues hinder a smooth interaction with the VA system, which



impedes the users’ perception of the system being truthful and their
trust in their own actions. To mitigate the lack of domain and VA
knowledge, knowledge-assisted visualization has been proposed to
help users navigate through different methods, parameters, and visu-
alization techniques. For example, Jänicke and Scheuermann built
a knowledge-assisted visualization for time-dependent multivariate
flow datasets, in which users can store process knowledge to aid
later analyses [30]. Their user study also shows that knowledge can
be extracted and transferred to novice users with this approach.

3.2.3 Should I trust my judgment?

Human decision-making underlies errors and differences in judg-
ment. For example, we tend to seek meaning in things and interpret
things within our own experiences, often seeing patterns where there
are none. This phenomenon is called apophenia, and being aware
of it and working actively against it is a skill that is hard to come
by [35]. Furthermore, facing the same VA system, different people
make different judgments, as they look at the system through their
own lenses of reality with different personal traits, habits, and behav-
ioral patterns. Such deviations can interfere with trust calibration.

As part of one’s subjective construct of reality, cognitive bias is
a systematic deviation from rational judgment caused by the use of
heuristics in decision making [28]. A taxonomy of cognitive biases
for information visualization by Dimara et al. lists and classifies
154 cognitive biases [14]. For example, confirmation bias will
have users subconsciously look for evidence that is in line with
any prior assumptions, while ignoring findings that contradict their
assumptions [51]. Seeing a lot of confirming evidence in a VA
system can lead to mistrusting it. This is a clear miscalibration,
as the system always shows the full story, but the user only pays
attention to one side of it. To address selection bias, Gotz et al. [20]
showed the similarity of a selected data subset to the full dataset to
ensure the selection is representative. Dimara et al. [13] highlighted
optimal choices and altered task framing to mitigate attraction effects.
Wall et al. proposed real-time metrics to detect bias [68] and outlined
a design space for mitigating bias in VA systems [69].

Moreover, many personal factors, such as culture, gender, and
personality can heavily influence how one absorbs information and
evaluate trustworthiness. For example, people from cultures with
high uncertainty avoidance, such as Greece, Portugal, and Poland,
tend to make unnecessarily conservative evaluations, while members
of low uncertainty avoidance cultures, such as Singapore, Hong
Kong, and Sweden, are more prone to take risky actions [17], which
might include trusting something more easily. Regarding personality,
locus of control (LOC), which measures the degree to which one
feels in control of or controlled by external events [53], is one
of the more well-studied personality traits. In the context of VA,
Ziemkiewicz et al. found that users with external LOC are able to
efficiently complete VA tasks even with unfamiliar visualizations
like an inclusion hierarchy, while internal LOC users struggle to do
so if not presented with a familiar node-link drawing [71]. To adapt
to different personal traits, personalized visualization offers a way to
create interfaces that cater to the diversities among users [52], which
better align with what different users expect and need, and are thus
less likely to lead to miscalibrated trust.

3.2.4 Should I trust my situational state?

When users perform a data analysis, their situational state is an un-
derlying factor to their decision-making. Their current internal mood
as well as external environment can influence how they perceive,
understand, and take actions. Thus, the users’ situational state also
affects the trustworthiness of their actions and insights.

Regarding mood, studies in decision-making show that negative
moods are associated with exploration rather than exploitation be-
haviors, as well as introducing changes rather than maintaining the
status quo [58], among others [54]. This also impacts the use of

VA systems. For example, using VA systems with a negative mood
makes the user more likely to introduce unnecessary changes and to
explore the visualization for an extended amount of time.

Environmental factors include physical as well as mental ones.
Although VA tasks are usually performed in a consistent indoor en-
vironment, it not necessarily optimal – especially social factors such
as shared offices, interruptions and distractions can make a focused,
in-depth analysis session almost impossible. This leads in turn to
an increase in perceptual errors, and an inattentiveness to one’s own
biases and algorithmic biases alike. External mental factors can also
have an impact. Risk is an important mental factor among other
external situational variables for regulating trust behavior. When
users need to make a high-risk decision, they tend to rely on more
trustworthy cues and tools [64]. Thus, for a “high-stake analysis”
whose outcome will be of great influence – e.g., a trader’s investment
decision for a fund or a clinician’s treatment decision for a patient
– analysts are likely to choose methods they have more knowledge
about and feel safer with. But this also makes them more likely to
misuse methods that do not fit the problem at hand.

Tracking physical parameters like eye gaze and electroencephalo-
gram has been proven useful in gauging users’ internal situational
factors like mood and intentions [61]. VA systems can also ask
questions about users’ intentions or external situations before they
enter the analysis process. Such information can be used to adapt
the VA system to the situational factors.

4 EMERGING FACES OF TRUST

Over the past years, a number of different “flavors of VA” have
emerged that introduce new possibilities to the generic VA process
that goes back and forth between human and computer. As these
emerging approaches have implications on trust building and cali-
bration in VA, we briefly discuss three of them in the following.

Progressive VA (PVA) carries out analytic computations in a
step-wise manner on data subsets (so-called chunks) in order to
visualize and interact with partial results already before the full
computation is finished [2]. Researchers list building trust as one
of the biggest benefits of adopting PVA, as by communicating the
progression of the underlying process, users’ gain an understanding
of how results are generated. It thus enables building and even
calibrating users’ trust in the computational process [46]. Yet it also
opens the question of how much can one trust the shown intermediate
partial result? [1] Since this question is very hard to answer, Jo et
al. developed a different approach to put a user’s mind at rest:
their PVA system ProReveal [31] incorporates safeguards that can
be attached to a running progressive computation and formulate a
hypothesis about the computation result as a conditional expression.
As long as this conditional holds true, the user can move on with
the analysis process – but the moment it is no longer true (e.g.,
because new data has meanwhile been processed that contradicts
the hypothesis) the user is notified. Their user study validates that
safeguards can alleviate the unsure feelings users have about early
and intermediate results. This makes for a very interesting case of
temporal separation (cf. Sec. 3.1.4) where one can only fully trust a
result once the computation is completed. Yet making use of PVA’s
inherent ability to continue the analysis already from a good enough
partial result, this point of full trust still lies in the future. Safeguard
effectively resolve this separation, as they allow moving on with the
analysis, even while still not fully trusting the partial result.

Mixed Initiative VA extends VA into a discourse where human
and computer are more on par with each other. To that end, a
Mixed Initiative VA system infers the users’ potential intentions and
likely analytic goal from their interactions with the system, so as
to proactively support these intentions and goals. This support can
range from automatically setting suitable defaults for parameters,
to the system offering guidance on how to achieve those analytic
goals [9]. An empirical study by Dasgupta et al. found that for



complex sensemaking tasks, Mixed Initiative VA systems can inspire
greater trust [11]. In addition to building more trust, Mixed Initiative
VA also provides useful tools to calibrate users’ trust in themselves
and the VA systems. By learning about the intentions of the users,
VA systems can adapt to better meet the inferred expectations and
needs of the users [39], which Sperrle et al. defined as a co-adaptive
guidance process [63]. This is essentially a communication process
between VA systems and users to calibrate trust. Relating this
dynamic to the trust continuum, Mixed Initiative VA opens up a
different direction of trust from VA system to user: the VA system
becomes the truster, the user becomes the trustee, and the VA system
has to trust the users know what they are doing and behave rationally
in order to correctly infer their intentions. Yet as the human user is
hardly rational, one can already see how miscalibration of trust in
the user is a huge challenge in Mixed Initiative VA.

Collaborative VA extends VA from one to multiple analysts, po-
tentially with different backgrounds and expertise, performing the
analysis together [22]. Collaboration has been proven to be useful in
bringing in diverse perspectives and mitigate individual’s limitation
of knowledge and cognitive bias. By communicating knowledge,
experience and different perspectives between each other, users will
be exposed to more new ideas and are therefore more likely to break
their habitual behaviors. This can help users to gain a more com-
prehensive understanding of the information in the VA systems, and
therefore calibrate their trust level. Billman et al. conducted a series
of empirical studies on collaborative intelligence analysis [3]. They
found a reduction in confirmation bias for heterogeneous groups of
people with diverse beliefs when using collaborative systems. How-
ever, for homogeneous groups with similar beliefs, their initial biases
were accentuated. Therefore, to ensure trustful decisions, it is impor-
tant to promote collaboration with heterogeneous groups of users to
make sure that diverse opinions and inputs will be considered.

5 CONCLUSIONS

While research dealing explicitly with trust building has been few
in the field of VA, work that emphasizes trust calibration in VA
is even rarer. Inspired by work in related research fields such as
automation [12,25,36] and intelligent systems [27], we make a clear
distinction between trust building and trust calibration, and bring
attention to the latter for matching users’ perceived trust and the
actual trustworthiness of VA systems. Admittedly, trust building
is essential to avoid distrust situations where users might abandon
the VA systems. However, building trust that is higher than the
actual trustworthiness of the VA systems might set user expectations
too high, leading to blindly trust the system, which will result in
disappointment sooner or later. This is precisely the point of trust
calibration, which aims to find the appropriate trust level for a VA
system and dataset at hand. Trust calibration can in most instances be
understood as a form of communication between system and human
user in which expectations are aligned to avoid disappointments.

In this paper, we established the importance of trust calibration
through the conceptual space of a trust continuum and discussed
it for VA systems and users. However, much more research needs
to be done to gain a more comprehensive understanding of trust
calibration in VA. To begin with, trust building and calibration can
stand in conflict with each other when the actual trustworthiness of
a VA system is low, and thus building perceived trust would actively
miscalibrate it. Therefore, it is important to consider and investigate
how trust building and calibration should coexist. Furthermore,
although there has been some research on evaluating trust level [11,
27], tracking trust calibration can be a dynamic process that requires
continuous monitoring of trust and trustworthiness. How to evaluate
trust calibration is therefore an important but complicated question
to address. Last but not least, as new VA approaches emerge, trust
calibration can become more intricate – PVA brings up additional
trust issues when working with incomplete results, Mixed Initiative

VA starts to asks about the trustworthiness of users, and collaborative
VA introduces interpersonal trust to the VA process. Both theoretical
and empirical research is needed to fully dissect and investigate the
trust dynamics in corresponding VA approaches.
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