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ABSTRACT

Recently, machine learning is massively on the rise in medical appli-
cations providing the ability to predict diseases, plan treatment and
monitor progress. Still, the use in a clinical context of this technol-
ogy is rather rare, mostly due to the missing trust of clinicians. In
this position paper, we aim to show how uncertainty is introduced in
the machine learning process when applying it to medical imaging at
multiple points and how this influences the decision-making process
of clinicians in machine learning approaches. Based on this knowl-
edge, we aim to refine the guidelines for trust in visual analytics to
assist clinicians in using and understanding systems that are based
on machine learning.

1 INTRODUCTION AND BACKGROUND

Machine learning is known as the automatic generation of knowl-
edge [28]. Since its start in the 1950s, these classes of algorithms
became more and more popular in a variety of applications such as
mechanical engineering, biology, and medicine [9]. This effect is
strengthened by the increasing popularity of neural networks, which
are a big subgroup of machine learning [11].

Especially in medical applications, machine learning becomes
increasingly important as it provides the ability to predict diseases
or segment organs [14]. Examples of successful uses of machine
learning are lesion segmentation [17], tumor segmentation [32] and
skin disease determination [30].

Still, research is centered around a further use of machine learning
to improve diagnosis, drug discovery, personalized medicine, smart
health records, and clinical trials. These developments can be seen as
a revolution of the healthcare system induced by the use of machine
learning [10, 13, 31] and are known as one of the major recent
challenges in medical visualization [19].

Although the massive potential of machine learning in medical
applications is known, there is a lack of transfer of such novel
techniques into the clinical daily routine [51]. This is due to a variety
of factors that are also coupled with legal restrictions, as shown by
Maack et al. [35]. Medical software is considered to be a medical
device and therefore underlies hard restrictions for real-world use in
many countries. Besides these legal restrictions, machine learning
approaches form a black box that is hard to interpret due to a large
number of parameters that are adjusted during the learning process.
Here, clinicians tend to reject these types of algorithms, as they are
not able to understand the decision-making process of the neural
network, but are still responsible for the decisions they make based
on the provided systems [2]. This is a very specific problem in the
medical domain, as the decisions of clinicians have a great effect
on a patient’s life. The effect is that clinicians do not desire to be
directed by systems they do not fully understand.

Explainable artificial intelligence (XAI) aims to help users to
understand the learning process of machine learning algorithms.
Troja and Guan [52] showed a state of the art analysis of artificial
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intelligence in the medical context and summarized the remain-
ing challenges. Here, they state that uncertainties in the machine
learning process are an open problem that leads to the missing appli-
cability of machine learning approaches in medical imaging. The
effect of uncertainty in decision-making processes has been shown
by Sacha et al [47] and guidelines to make use of visual analytics to
create trust have been developed.

In this manuscript, we shed light on the general machine learning
process and see how uncertainty-aware visual analytics can drive
its use in medical imaging. Based on this, we aim to summarize
potential sources of uncertainty in the machine learning process
that will occur when applying machine learning in medical imaging.
For these sources, we aim to define dependencies and check if the
sources can be quantified. Further, we will revisit the guidelines
formulated by Sacha et al. and refine them based on the uncertainty
analysis conducted in this paper.

This paper contributes:

• Summary of the machine learning cycle in medical imaging

• Sources of uncertainty in the machine learning cycle in medical
imaging

• Guideline to handle these sources of uncertainty based on
visual analytics

2 THE MACHINE LEARNING PIPELINE IN MEDICAL IMAGING

Independent from the application, machine learning is performed
using a specific cycle [22], as shown in Figure 1. This cycle consist
of three major parts: Data, Model and Deployment. Please note, that
there exist ambiguous descriptions of the machine learning cycle.
We selected the following one, as it is abstract enough to be applied
in most machine learning settings in medical imaging.

Each category will be briefly explained in the following.

Figure 1: The machine learning process. The cycle contains 3 steps:
Data, Model and Deployment, including their subcategories.



2.1 Data

The data step is the first entry point in the machine learning process,
aiming to build a data basis that can be used as ground truth for the
machine learning process. In medicine, this mostly refers to health
records such as medical images, lab results, or doctoral reports. In
this area, data can often be stored distributed, or even analog, which
means that a processing of data is required to make use of it. The
data process can be separated into three steps: fetch, clean, and
prepare.

Fetch In the step of fetching, the goal is to gather a medical
image that can be used for machine learning. In the medical context,
this usually includes the fetching of patient-related data such as med-
ical images, medication plans, treatment outcomes, or demographic
data. Especially in the medical context, this may also include the dig-
italization of data. In many countries, medical data can be acquired
manually and stored offline for data security reasons. In addition,
medical data is often stored distributed, which may require data
fusion from different sources.

Clean The cleaning stage of the machine learning pipeline may
lead to datasets that need to be excluded or completed. In the medical
context, this can result in datasets that cannot be used for model
training as it does not fit the given requirements. Especially in
medicine, each clinic can have different data acquisition protocols
that output different medical records. In addition, for example,
demographic data is often ubiquitous or street names can be written
differently, although they are referring to the same address. Further,
in medicine images can be acquired at different time steps, but do
not need to. Here, the data needs to be cleaned such that all data
underlies the same requirements.

Prepare In the preparation step, data needs to be manipulated
when it fits a given machine learning model. Here, several steps may
be required. On one hand, transformations such as transforming all
data records into the same coordinate system is a typical preprocess-
ing task for medical image analysis. Normalization is often required
as well, as medical images can be acquired using different scales on
different devices.

2.2 Model

After the data acquisition step, the selected machine learning model
is trained and evaluated. Usually, the gathered datasets are separated
into training and testing datasets [38]. This step involved the derived
dataset from the first step as an input.

Train Depending on the selected machine learning model, the
model needs to be trained. Here, the training dataset is used to train
the selected model based on the determined ground truth. Here, a
proper model needs to be selected that fits the training dataset and the
defined ground truth. In the medical context, image segmentation
is an important application, where U-Nets have been developed
specifically [43].

Evaluate After training the model needs to be evaluated. Here,
the testing dataset is used to evaluate the performance of the trained
network. Here, different metrics can be used to quantify the perfor-
mance of the network.

2.3 Deployment

In the deployment phase, the goal is to provide an accessible and
integrated version of the trained model. This phase separates into
two steps: integrate and monitor. The challenges in the medical area
to achieve deployment of these technologies have been summarized
by Kelly et al. [27] and will be described in the following.

Integrate Training a machine learning algorithm is usually
achieved in a very protected environment regarding the data that is
used for training. Especially in medicine, many conditions can occur
that may vary from the setting that has been used during the training
stage. For example, if a heart is analyzed by a neural network that
was only trained with uninjured rips visible in the image, an image
that contains injured ribs may not output useful results. Here, it is
important to investigate, if real-world conditions match the trained
network. This may also include the adaptation or standardization of
image acquisition techniques in the clinical daily routine.

Monitor After integration, the model needs to be monitored to
check if its performance remains stable during real-world conditions.
In addition, the model can be refined if the performance needs to be
increased. In the area of medical imaging, this is an important issue
that needs to be considered every time the image acquisition process
changes.

3 BASICS ON UNCERTAINTY

As we aim for an analysis of sources of uncertainty in the machine
learning pipeline, we would like to give a brief background on the
definition, quantification, and processing of uncertainty. Here, we
provide basics on the theory that will be required in the rest of the
manuscript.

3.1 Definition of Uncertainty
When a measurement a′ is performed on a measurand a ∈ (−∞,∞)
with true value a∗. Most of the time a∗ and a′ differ from each other
by an error e = |a∗− a′|. This error is the sum of various effects,
like measurement inaccuracy, as some form of sensor captured the
measurement. Therefore, a ground-truth a∗ is needed to be able to
calculate such a deviation from the real value.

The uncertainty of a measurement is a quantification of doubt,
in particular the description of a specific uncertainty event, about
the measurement result [23]. The uncertainty is either known, mak-
ing the measurand uncertainty-aware, or unknown, leading to an
uncertain measurand.

As stated above, uncertainty springs from various sources that
are subdivided into types of uncertainty events, as shown in Fig. 2.
Generally, uncertainty can be divided into objective uncertainty,
meaning that it can be quantified, and subjective uncertainty that
cannot be quantified. Objective uncertainty is further separated into
epistemic uncertainty, arising from the model itself, and aleatoric
uncertainty, stemming from the underlying data. Subjective uncer-
tainty can either be rule uncertainty, treating the doubt about a rule,
or moral uncertainty, dealing with the ethical correctness of a rule.

Figure 2: Types of uncertainty events as shown by Souza et al. [42].
Events can either be objective or subjective, where objective uncer-
tainty events can be epistemic or aleatoric and subjective uncertainty
events can be moral uncertainty and rule uncertainty.



3.2 Quantification of Uncertainty
For uncertainty events, one can determine if the event is quantifiable.
Here, Lo and Mueller [33] defined five levels of quantifiability:

• Level 1: Complete Certainty

• Level 2: Risk without Uncertainty

• Level 3: Fully Reducible Uncertainty

• Level 4: Partially Reducible Uncertainty

• Level 5: Irreducible Uncertainty

Here, Level 1 refers to events that have a clear outcome that is
not variable. For these events, there does not exist any variability in
the event. Level 2 refers to uncertainty events that are fully known
and quantifiable. In particular, this refers to known probability distri-
butions of potential outcomes. Further, Level 3 refers to uncertainty
events that are not completely known. Here, potential outcomes
are known, but the probability distribution is not. This might be
reducible when including more knowledge. Resulting from this, they
can be quantified partially. In contrast, Level 4 refers to uncertainty
events where neither the potential outcomes nor the probability dis-
tribution of the outcomes is fully known. Still, they might be known
when more knowledge is included. At last, Level 5 describes un-
certainty events that are not quantifiable in their potential outcomes,
nor by their probability distributions, independent of the knowledge.

Uncertainty can be described throughout arbitrary approaches,
where bounded uncertainty and probabilistic distributions are the
most common.

For bounded uncertainty [39] there exist an interval around the
measurand that can be defined as: uB(a) = [a′− u,a′+ u]. This
description of uncertainty is chosen when it is not important how the
occurrences of a measurand are distributed. Instead, it is important
to know what are the limits in this variation [3].

In the case of probabilistic distribution functions [34] uPDB(a)
the measurand usually defines the most probable location of the true
value that was captured. The most prominent choice of probabilistic
distribution functions are Gaussian distribution functions, but in gen-
eral, any distribution can be used to express uncertainty, including
generalized linear models, Poisson distribution, and count-based
models [24].

3.3 Propagation and Accumulation of Uncertainty
Data is mostly propagated through mathematical operations O.
These operations do not solely affect the data, but also the attached
uncertainty. Besides, mathematical operations are affected by the
uncertainty of their operands. This results in the need to adjust math-
ematical operations to be able to handle uncertainty. There exist a
variety of techniques to achieve this, which are mostly inspired by
error propagation [12].

The accumulation of uncertainty can in principle be achieved by
arbitrary accumulation functions. Cai et al. [8] presented a survey
of aggregation functions. In the machine learning process, a proper
aggregation function needs to be able to properly aggregate all
sources of uncertainty in the machine learning cycle and allows
the user to adjust the importance of all sources of uncertainty in
the machine learning cycle. This is required, as users may need to
determine which sources of uncertainty are more important than
others or even discard specific sources.

4 SOURCES OF UNCERTAINTY IN THE MACHINE LEARNING
PIPELINE

When applying machine learning to medical imaging, each step in
the machine learning pipeline is affected by uncertainty and needs
to be tackled [1]. Most machine learning approaches in the context
of medicine make use of medical image data. This type of data
has been shown to hold a high amount of uncertainty [18]. In this

section, we aim to summarize the sources of uncertainty during this
process.

There exist a variety of taxonomies of sources of uncertainty that
are related to general uncertainty analysis and potential visualization
strategies. Schunn et al [50] provided an extensive taxonomy of types
of uncertainty. We use this work as a starting point and selected the
sources that are relevant in the area of machine learning in medical
imaging. Boukhelifa [4] et al. provided a user evaluation that
revealed how important the sensemaking of uncertainty is for users.
MacEachren et al [36] and Pang [40] et al provided visualization
strategies for different sources of uncertainty. We aim to highlight
the benefit of uncertainty-aware visual analytics throughout this
manuscript.

At this point, we aim to highlight that there may occur sources of
uncertainty, that are independent of the underlying domain. We still
aim to list these and show which impact they have explicitly on the
medical domain.

4.1 Data
In the data stage, the sources of uncertainty are mainly originating
from the image processing pipeline that is executed to collect and
prepare the data to train the selected machine learning algorithm, as
shown in the work of Gillmann et al [18]. A summary of all sources
of uncertainty in the data step is shown in Table 1. The sources will
be summarized in the following.

Step Source Label Level Dependencies

Fetch

Positional Un-
certainty

1.1.1 2 -

Value uncer-
tainty

1.1.2 2 -

Incompleteness
of data

1.1.3 2 -

Clean

Manipulation
Uncertainty

1.2.1 2 1.1

Exclusion Un-
certainty

1.2.2 2 1.1

Prepare

Model Inaccu-
racy

1.3.1 3 1.1, 1.2

Model Incom-
pleteness

1.3.2 3 1.1, 1.2

Model Parame-
ter Uncertainty

1.3.3 3 1.1, 1.2

Labeling Uncer-
tainty

1.3.4 3 1.1, 1.2

Table 1: Sources of Uncertainty in the Data step. The sources are
enumerated to provide consistent referencing. The level of uncertainty
and the respective category are included.

Fetch During the fetch step, the data that is selected contains
three types of uncertainty. All these uncertainties are of level 2,
which means that these uncertainties are known and quantifiable.
When starting the machine learning process, these sources start
without dependencies.

First, the dataset can contain positional uncertainty. This often
occurs in medical imaging datasets such as Ultrasound, where the
position of the acquisition device is tracked [21]. In addition, po-
sitional uncertainty is often an issue, when multiple modalities are
acquired for machine learning [48].

Next, value uncertainty arises in principally all acquired medical
datasets. Technically, all measured values can contain uncertainty,
as the measurement process is achieved by a variety of different
sensors that may lead to uncertain values. Especially in medical
imaging, pixel or voxel values can be affected by uncertainty caused



by the partial volume effect or voxel bleeding, which results from
the reconstruction process [44].

Last, the incompleteness of data in medical records is a further
source of uncertainty. Medical records are often acquired at specific
points in time and everything that happens in between is unknown
[46]. In addition, different clinics have different image acquisition
devices that have varying capabilities. Here, acquisition steps may
be incomplete depending on the clinic it took place.

Clean The cleaning step introduces two different types of uncer-
tainties: manipulation uncertainty and exclusion uncertainty [6, 29].
These uncertainties are of type 2 and can usually be quantified. Un-
fortunately, they have dependencies with all sources of uncertainty
from the prior fetch step.

First, the manipulation of data introduces uncertainty. If values
are missing or clear outliers, a proper strategy needs to be found
that completes or smoothes the data, which introduces uncertainty.
Especially in medicine, this is an important step, as often many
datasets need to be excluded due to prior diseases or inappropriate
data collection.

In addition, the cleaning step can introduce uncertainty in the
machine learning cycle as the decision if a dataset is excluded or
not is performed based on a present metric. This can be affected by
uncertainty, as it might not be clear if the metric can cover all cases
that need to be excluded or if it excluded too many approaches.

Prepare In the preparation step, the sources of uncertainty
mainly originate from the used algorithms that transform the col-
lected data such that it can be processed in the selected machine
learning model. Here, model inaccuracy, model incompleteness, and
model parameter uncertainty are sources of uncertainty. Models are
never able to map reality perfectly and thus introduce uncertainty.
This is amplified by the fact that models cannot be complete by
their definition, which also introduces uncertainty. These sources of
uncertainty result are of type three which means that the uncertainty
is known, but the probability distribution is not. They depend on the
uncertainties that arise from 1.11 and 1.2, as the decision of models
is related to the outcome of the fetching and cleaning step.

In addition, the preparation step introduces uncertainty in the ma-
chine learning pipeline while labeling data. Especially in medicine
data is usually labeled to be used for machine learning. Unfortu-
nately, this process is affected by uncertainty as well. This is due to
the nature of medical data and flaws in the resulting labels. Often,
multiple diseases can occur or doctors themselves cannot separate
diseases clearly. In addition, location tasks such as determining a
tumor in an organ are affected by uncertainty, as the underlying data
might not give a clear separation between healthy and diseased tis-
sue. This leads to fuzzy labels introducing uncertainty. This source
of uncertainty is of type 4, as the label is usually made by a clinician
and the resulting uncertainty cannot be quantified properly.

4.2 Model
In the model stage, the sources of uncertainty are manifold and
mainly originate from the selected model that needs to be trained
in the machine learning process. An overview of all sources can be
found in Table 2. They will be explained in the following.

Both training and testing data uncertainty originate from the
dataset and need to be properly separated such that the machine
learning algorithm can learn features properly, allowing the testing
dataset to test the learned features properly. Especially in medicine,
it is important to separate the medical cases such that the model can
learn all occurring conditions of patients properly. This uncertainty
is of type 3 and depends on the uncertainties arising from the data
step.

Train After separating the data, the machine learning model
can be trained with the developed training dataset. Here, the model
itself introduces model and parameter uncertainty, as the choice

Step Source Label Level Dependencies
Train &
Evaluate

Separation Un-
certainty

2.1 3 1

Train

Parameter Un-
certainty

2.2.1 3 2.1

Model Inaccu-
racy

2.2.2 3 2.1

Training Uncer-
tainty

2.2.3 3 2.1

Evaluate

Evaluation Un-
certainty

2.3.1 3 2.1

Metric Uncer-
tainty

2.3.1 3 2.1

Table 2: Sources of Uncertainty in the Model step. The sources are
enumerated to provide consistent referencing. The level of uncertainty
and the respective category are included.

of a proper model is uncertain itself and models are not able to
replicate the real world entirely. Medicine provides a variety of data
that usually focuses on multiple aspects. This means that a proper
algorithm for machine learning needs to be selected.

In addition, the training uncertainty describes, if a network is
trained well enough or should be improved and to what extend.
There are usually several metrics used to determine if a model needs
further training. Still, these metrics are a source of uncertainty, as it
is not clear if there might be a more optimal learning procedure.

Evaluate After training, the model needs to be evaluated using
the test dataset. Here, the evaluation uncertainty is a source of
uncertainty arising from the fact that evaluation is only properly
possible when using proper evaluation data and setups. Upon all the
possible settings, the question arises if the current chosen setup can
check the performance of a machine learning algorithm.

Model evaluation is also accomplished using extitevaluation met-
rics. Like in the training step, these metrics are a source of uncer-
tainty. In medicine many metrics are available, but the question is
which one fits best in the given case [25].

All sources of uncertainty during training and evaluation are of
level three which means that they are known, but the probability
distribution is unknown. They are connected to the separation uncer-
tainty in the respective category.

4.3 Deployment
In the deployment stage, uncertainty sources are rather inhomo-
geneous and can be subject to various effects. Table 3 shows an
overview of these sources. They will be summarized in the follow-
ing.

Data Source Label Level Dependencies

Integrate

Similarity Uncer-
tainty

3.1.1 3 1,2

Fitting Uncer-
tainty

3.1.2 3 1,2

Monitor

Perceptual/
Cognitive Uncer-
tainty

3.2.1 4 3.1

Decision Making
Bias

3.2.2 4 3.1

Refinement Met-
ric Uncertainty

3.2.3 3 1,2

Table 3: Sources of Uncertainty in the Deployment step. The sources
are enumerated to provide consistent referencing. The level of uncer-
tainty and the respective category are included.
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Figure 3: Examples of uncertainty-aware visual analytics in medical applications. a) Uncertainty-aware visual analytics to assist keyhole
surgeries [16]. b) MITK tool with available systems functions [20]. c) Sensemaking in uncertainty-aware visual analytics [26]. d) Provenance
visualization for uncertainty-aware image processing [15].

Integrate In the integration step, the uncertainty of the real-
world setting is similar enough to fit the trained model is an im-
portant problem. Especially in medicine, where so many different
conditions of patients can occur and clinics run different scanners
and treatment protocols, these similarity needs to be ensured. This
source of uncertainty is of level 3 and depends on the uncertainties
from steps 1 and 2.

In addition, the fitting uncertainty describes the potential of the
provided machine learning model to address the needs of the clinical
environment. The daily clinical routine can be very inhomogeneous
while issues might arise in the case of an emergency. Here, it is not
certain if the developed machine learning approach fits the given
setting. This is difficult to quantify, depending on the uncertainties
arising in the data and model step.

Monitor In the monitoring step, several sources of uncertainty
can occur.

First, cognitive and perceptual uncertainty can be introduced by
the user, interpreting the machine learning results. Especially in
medicine, clinicians are responsible for their decisions and therefore
need to understand how machine learning algorithms make up their
decisions.

Machine learning approaches might output a result not meeting
the clinician’s expectations of the clinician. In many cases, clinicians
are left with their intuition on how to decide on a proper treatment,
which has been build throughout their education and experience. In
related machine learning approaches, clinicians discarded results
from the data as they may not fit the expected outcome of the clini-
cian.

Cognitive/perceptual and decision-making bias uncertainty are of
level four as it is related to subjective human behavior which is hard
to quantify. It is based on the uncertainty of the integration step of
the deployment phase.

At last, the monitoring step requires metrics to estimate machine
learning approach refinement. Again, metrics are a source of uncer-
tainty as they may not be optimal to express algorithm refinement
needs. As other metric-based uncertainties are of level 3. This
uncertainty depends on the uncertainties of the data and model steps.

5 GUIDELINES, CHALLENGES, AND EXAMPLES FOR MEDI-
CAL APPLICATION

We have shown that the machine learning cycle is affected by a
variety of sources of uncertainty in each step when being applied in
the medical area. In the following, we will show how they can assist
in providing useful visualization strategies for machine learning in
medical imaging based on visual analytics. Explainable Artificial
Intelligence (XAI) has been shown to assist users and developers in
understanding machine learning approaches, but specific guidelines
and rules are not available so far to achieve this goal.

Sacha et al. [47] provided a set of guidelines that are required to
generate trust using visual analytics approaches. Namely, these are:

• Set up an uncertainty-aware visual analytics cycle (G1)

– Quantify Uncertainties in Each Component (G1.1)
– Propagate and Aggregate Uncertainties (G1.2)
– Visualise Uncertainty Information (G1.3)
– Enable Interactive Uncertainty Exploration (G1.4)

• Make the Systems Functions Accessible (G2)

• Support the Analyst in Uncertainty Aware Sensemaking (G3)

• Analyse Human Behaviour to Derive Hints on Problems and
Biases (G4)

• Enable Analysts to Track and Review their Analysis (G5)

In this section, we aim to show the implications of these sug-
gestions to the machine learning process in medical imaging. We
grouped the first four guidelines by Sacha et al. into one guideline,
as it can be seen as a general setup of an uncertainty-aware visual
analytics cycle. For each guideline, we will summarize the guideline
applied to medical applications, resulting in challenges, and give
examples.

Preim and Lawonn provided an overview of visual analytics ap-
proaches in public health [41], showing that the use of visual analyt-
ics in medical imaging is a prominent example. Uncertainty-aware
visual analytics is less common, mostly due to a missing workflow
to generate these approaches. Examples can be found for radiation
therapy [37], surgery assistance [16] and fiber tracking analysis [5].
An example of uncertainty-aware visual analytics in medical appli-
cations was given by Gillmann et al [16]. Here, a holistic tool to
plan keyhole surgeries allows reviewing the probability of a surgery
tunnel to affect a certain structure in the human body was provided
as shown in Figure 3(a).

Still, their application to machine learning approaches is an open
problem. This results from a missing generalized tool that allows
exploring the design space of uncertainty visualization in medical
imaging. Here, at least a library such as the visualization toolkit [49]
would be beneficial to drive the development of uncertainty-aware
visual analytics in medical imaging.

G1: Set up an uncertainty-aware visual analytics cycle
The development of uncertainty-aware visual analytics cycles can
be summarized by the four first guidelines of Sacha et al. They will
be explained briefly in the following.

G1.1: Quantify Uncertainties in Each Component. In section
4, we showed that each step of the machine learning pipeline can
introduce uncertainty into the machine learning process. We also
showed, that not all of these sources can be quantified or completely
quantified. Still, we recommend declaring all relevant sources of
uncertainty in a given machine learning process, checking if they
are quantifiable. For the remaining sources of uncertainty, the open
challenge is to find proper quantification approaches.



To be able to review the quantified sources of uncertainty, visual
analytics can be of great benefit as it may help developers and
users in medicine to understand how individual steps of the image
processing pipeline are affected by uncertainty.

G1.2: Propagate and Aggregate Uncertainties. When running a
machine learning cycle, the sources of uncertainty are propagated
and aggregate along the processing pipeline. Here, we suggest
implementing proper uncertainty propagation and aggregation ap-
proaches such that users can identify the amount of uncertainty that
is currently inherent in a respective component. An open challenge
in this context is to determine which propagation and aggregation
approaches are the most suitable in the medical context.

G1.3: Visualise Uncertainty Information. Based on G2, the
amount of uncertainty inherent in each component of the machine
learning process needs to be visualized to allow developers and users
a quick understanding of the uncertainty. Although we showed that
several uncertainty-aware visualization approaches exist, there re-
mains an open challenge of testing which ones are the most effective
in what scenario.

G1.4: Enable Interactive Uncertainty Exploration. During the
machine learning cycle, multiple sources of uncertainty are intro-
duced. A visual analytics approach that assists in understanding
these sources and how they propagate and accumulate is required.
Again, as in G1.3, the investigation of interaction techniques and
their effectiveness is an open challenge.

G2: Make the Systems Functions Accessible Medical data
analysis is not performed by the clinician itself most of the time.
This can result in the rejection of a novel image processing technique
as the clinician cannot follow the computations and understand how
results are generated. Especially for machine learning approaches,
which often act as a black box system, this does not provide trust
in the made computations. Here, visualization approaches such as
the MITK [20] (Medical Imaging Interaction Toolkit) are required
to show medical users how computations are processed and how
parameters can influence a computational result. In this tool, users
are enabled to apply image operations and follow the made com-
putations visually. An application to machine learning in medical
imaging of these approaches remains an open challenge.

G3: Support the Analyst in Uncertainty Aware Sensemaking
When clinicians make decisions based on a computational system
they need to know how reliable and trustworthy these decisions are.
Uncertainty-aware visual analytics can be of great benefit in this
process as it allows clinicians to estimate the trustworthiness of the
decision. Karami et al. [26] provided a visual tool for sensemaking
in visual analytics, as shown in Figure 3(c). Still, this approach
needs to be transferred to machine learning applications, which can
be formulated as an open challenge.

G4: Analyse Human Behaviour to Derive Hints on Problems
and Biases The effects of cognitive biases in the medical area
are well-known [7] and subject to research. In medicine, this effect
is strong as the decision on therapy is made by a clinician who is
reviewing certain data that is affected by uncertainty. Here, clinicians
often need to rely on their experience. Therefore, the inclusion of
visualization in this area is desirable as it can indicate biases and
provide visual reasoning of the run methods and the results.

G5: Enable Analysts to Track and Review their Analysis
We have shown that uncertainty is inherent in any step of the ma-
chine learning pipeline and that it accumulates when running mul-
tiple steps. Here, researchers need to be able to understand this
procedure with a proper visualization strategy. The understanding
of how uncertainties arise and develop throughout multiple compu-
tations is a task of provenance. Xu et al. [53] provided a state of the
art analysis of visualization approaches that assist in understanding
provenance. Davidson et al. [45] showed the importance of prove-
nance when considering data that is affected by uncertainty. Here,

a useful combination of visualization approaches that target uncer-
tainty in medical data is desired and describes an open challenge.
An example of such approaches was given by Gillmann et al [15]
showing how arbitrary image processing pipelines can be processed
while reviewing the development of the uncertainty.

6 CONCLUSION

In this paper, we showed that the machine learning process is af-
fected by a variety of sources of uncertainty that can affect the
decision-making process of clinicians. We provided a taxonomy
of uncertainties attached to each step of the machine learning cy-
cle. Using this taxonomy we provide guidelines to make use of
uncertainty-aware visual analytics while using machine learning
cycles in medical applications. In addition, we provide successful
examples and open challenges in this application area.
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[19] C. Gillmann, N. N. Smit, E. Gröller, B. Preim, A. Vilanova, and T. Wis-
chgoll. Ten open challenges in medical visualization. IEEE Computer
Graphics and Applications, 41(5):7–15, 2021. doi: 10.1109/MCG.
2021.3094858

[20] C. J. Goch, J. Metzger, and M. Nolden. Abstract: Medical research data
management using mitk and xnat. In K. H. Maier-Hein, geb. Fritzsche,
T. M. Deserno, geb. Lehmann, H. Handels, and T. Tolxdorff, eds.,
Bildverarbeitung für die Medizin 2017, pp. 305–305. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2017.

[21] H.-E. Gueziri, M. Mcguffin, and C. Laporte. Visualizing positional
uncertainty in freehand 3d ultrasound. Proceedings - Society of Photo-
Optical Instrumentation Engineers, 9036, 03 2014.

[22] H. Hapke and C. Nelson. Building Machine Learning Pipelines: Au-
tomating Model Life Cycles with TensorFlow. O’Reilly Media, Incor-
porated, 2020.

[23] S. W. Hasinoff, F. Durand, and W. T. Freeman. Noise-optimal capture
for high dynamic range photography. In 2010 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition, pp. 553–560,
June 2010.

[24] T. M. Hegel, S. A. Cushman, J. Evans, and F. Huettmann. Current
state of the art for statistical modelling of species distributions. In
Spatial complexity, informatics, and wildlife conservation, pp. 273–
311. Springer, 2010.
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