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ABSTRACT

Time series forecasts are ubiquitous, ranging from daily weather
forecasts to projections of pandemics such as COVID-19. Commu-
nicating the uncertainty associated with such forecasts is important,
because it may affect users’ trust in a forecasting model and, in turn,
the decisions made based on the model. Although there exists a
growing body of research on visualizing uncertainty in general, the
important case of visualizing prediction uncertainty in time series
forecasting is under-researched. Against this background, we investi-
gated how different visualizations of predictive uncertainty affect the
extent to which people follow predictions of a time series forecasting
model. More specifically, we conducted an online experiment on
forecasting occupied hospital beds due to the COVID-19 pandemic,
measuring the influence of uncertainty visualization of algorithmic
predictions on participants’ own predictions. In contrast to prior
studies, our empirical results suggest that more salient visualizations
of uncertainty lead to decreased willingness to follow algorithmic
forecasts.

Index Terms: uncertainty visualization—visualization—visualiza-
tion techniques— human-centered computing—decision-making—
non-expert audiences

1 INTRODUCTION

Virtually every day we are confronted with time series forecasts.
Examples include weather forecasts, predictions of customer de-
mand, the development of financial markets, and the projection
of global pandemics like COVID-19. Such forecasts of the future
are always associated with uncertainty, especially when prediction
horizons are long. From a normative perspective, decision makers
should incorporate this uncertainty into their decision-making pro-
cesses [30]. However, research on behavioral aspects of judgment
and decision-making has shown that people are subject to cognitive
biases and often apply simplifying heuristics instead of following
rational decision theory [13].

Several studies examined the effects of uncertainty visualizations
on decision making, but to the best of our knowledge, the case of
uncertainty in time series forecasts has not yet been investigated.
Focusing on spatial data, Liu et al. [19] found that when visualizing
hurricane tracks, a selected number of potential tracks and a targeted
annotation can help participants estimate storm damage. However,
implications of uncertainty visualizations go beyond spatial data.
Kale et al. [15] investigated different static and non-static uncertainty
visualizations for the detection of historical trends in job data and
found non-static visualizations to require less data for effective
trend detection. In a weather-related decision scenario, Padilla et
al. [23] observed that when quantitative and qualitative uncertainty
in probability distributions was high, study participants were more
likely to choose a smaller fee than to risk a larger penalty. Kale et
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al. [14] found that visualizing distributions of a team’s predicted
score without a mean leads to a better assessment of the impact
of individual players on the team’s performance. Karduni et al.
[16] found that uncertainty visualizations lead to fewer changes in
participants’ beliefs about time-constant linear relationships between
two variables.

In a nutshell, most prior research has studied (a) whether showing
predictive uncertainty has any effect at all on people’s judgment and
decision-making, focusing on only one type of uncertainty visualiza-
tion [20, 32, 33], or (b) which type of visualization is most effective
in communicating uncertainty in general, not specifically focusing
on the task of time series forecasting [10, 15, 23]. Given the high
relevance of forecasting, we argue that it is important to bring these
two streams of research together. Hence, in this paper we study the
following research questions:

1. Does exposing predictive uncertainty affect how closely users
follow the predictions of a time series forecasting model?

2. Does this effect depend on the type of visualization used to
represent predictive uncertainty?

To address these questions, we conducted an online experiment on
forecasting COVID-19-related hospitalizations with 79 participants.
The participants were shown multiple historical time series of the
number of occupied hospital beds due to COVID-19 and had to
manually forecast the time series three weeks into the future. They
were then shown algorithmic forecasts either without uncertainty
information (control group) or with one of two different types of
uncertainty visualizations (i.e., 95% confidence interval plots or
ensemble displays). Finally, they had the chance to adjust their
initial forecast. At this point, we measured how much they adjusted
their initial forecast after seeing the algorithmic forecast and how
closely their final forecast agreed with the algorithmic forecast.

Surprisingly, contrary to our original hypotheses, we found that
when users were shown ensemble displays - a type of visualization
that has proven to be very effective in communicating uncertainty
- they were less likely to follow the predictions of the forecasting
model. To explain this empirical finding, we instantiate the cognitive
framework for decision-making with visualizations by Padilla et
al. [22] for the case of uncertainty in time series forecasting.

The remainder of this paper is structured as follows: In the next
section we develop our hypotheses based on theory and empirical
findings from the fields of decision-making and visualization. Next,
we describe the design of our experiment in detail. In Section 4, we
present the results of our data analysis. Subsequently, we discuss
potential reasons for our surprising findings. We close with a brief
outlook on future research.

2 RELATED WORK & HYPOTHESES DEVELOPMENT

2.1 Uncertainty vs. No Uncertainty
Our first two hypotheses1 address Research Question 1. The start-
ing point of our argumentation is the observation that generally

1We have pre-registered these hypotheses as well as the rest of the study
at https://aspredicted.org/ev2fb.pdf



algorithms tend to be superior to humans when it comes to making
predictions [8]. According to Grove’s et al. meta-analysis [8], al-
gorithms outperform humans in terms of predictive accuracy by a
margin of approximately 10%. Hence, there exists strong empiri-
cal evidence that decision makers should consider the outputs of
algorithms when making forecasts.

Several studies found providing users with outputs in the form of
uncertainty in algorithmic predictions is generally beneficial. For
example, in laboratory experiments using weather-related road main-
tenance games, participants made better decisions and took less risks
when provided with information about the uncertainty associated
with temperature forecasts [12, 26]. Likewise, in an online exper-
iment using a farming game, participants performed better when
they were shown uncertainty estimates of weather forecasts in the
form of confidence intervals [7]. In a recent experimental study on
house price prediction, McGrath et al. [20] found that people align
their own predictions more with provided algorithmic predictions
when they were shown probability distributions associated with the
algorithmic predictions. Fernandes et al. [5] investigated the impact
of uncertainty representation on decision-making for catching a bus
and found uncertainty visualization leading to improved decision-
making in comparison to no uncertainty visualization. Zhou et
al. [33] investigated the effect of confidence intervals around perfor-
mance curves of two water pipe outage prediction models on user
trust. They found that confidence intervals increased participants’
reported trust when the cognitive load of a task was low, while they
decreased trust when the cognitive load was high.

To sum up, the majority of existing empirical studies observe a
positive impact of uncertainty visualizations on algorithm-supported
decision-making. Thus, we hypothesize that people are more likely
to follow predictions of a time series forecasting model when pre-
dictive uncertainty is displayed compared to no uncertainty being
displayed. More specifically:

Hypothesis 1a: People are more likely to follow the predictions
of a time series forecasting model when predictive uncertainty is
visualized through a 95% confidence interval plot compared to no
visualization of uncertainty (control group).

Hypothesis 1b: People are more likely to follow the predictions
of a time series forecasting model when predictive uncertainty is
visualized through an ensemble display compared to no visualization
of uncertainty (control group).

2.2 Ensemble Displays vs. Confidence Interval Plot

The third hypothesis addresses Research Question 2. Prior research
on uncertainty visualization has developed and tested a variety of
graphical annotations and visual encodings for representing uncer-
tainty [21]. In the context of time series forecasting, the 95% con-
fidence interval plot is arguably one of the most common ways
of visualizing uncertainty over time. However, as summarized by
Padilla et al. [21], prior research has shown that people often misin-
terpret this type of plot. A main reason is that people have general
difficulties interpreting probabilities. As a consequence, they may
substitute probabilistic uncertainty information for deterministic
information (e.g., in the context of temperature forecasting they
often think that the upper and lower bounds represent daily highs
and lows). People may also think of the boundaries of confidence
intervals as categorical instead of continuous information (e.g., is a
point inside our outside of the interval?). They may also assume that
all observations within the interval have the same probability [11].
Students, as well as researchers, struggle to understand confidence
intervals correctly in experiments [3, 9]. Kim et al. [17] presented
sample-based and distribution representations to their study par-
ticipants, but observed that participants did not necessarily update
their prior opinions about statistical relationships rationally and in
accordance with the presented statistics. This suggests that both the
disagreement between machine and human prediction as well as the

adjustment of human predictions based on statistical visualizations
are of interest.

An alternative to confidence interval plots are so-called ensemble
displays. Originally developed for the purpose of storm forecasting,
ensemble displays are generated by repeatedly permuting model
parameters and simultaneously drawing all resulting predictions as
lines on the same plot [18]. Ensemble displays are a frequency-
based way of visualizing uncertainty. For most people, it is easier to
interpret frequencies, which they are used to encounter in the real
world, than abstract probabilities [6]. In addition, people are not
necessarily overwhelmed when confronted with multiple metrics
instead of a single aggregated metric. They can naturally aggregate
frequencies and calculate summary statistics based on noisy local
characteristics [2]. On the contrary, people can interpret different
courses displayed as complementary rather than contrary. As a result,
taking the average of several noisy metrics can even be more precise
than a single metric on its own [1].

In laboratory experiments on forecasting storm paths, ensemble
displays outperformed other visualization techniques in terms of
interpretability and accuracy [24, 27]. Tak et al. [29] examined dif-
ferences between ensemble displays and confidence interval plots.
Participants were presented with a diagram of predictions of bound-
aries between different layers of the earth and asked to which layer
a particular point on the graph belonged. They found that ensemble
displays can visualize normal distributions and uncertainty well.
Overall, in most of the related work, frequency-based ensemble
displays lead to better decisions compared to probability-based plots
(e.g., confidence intervals). Hence, we formulate Hypothesis 2 as
follows:

Hypothesis 2: People are more likely to follow the predictions
of a time series forecasting model when predictive uncertainty is vi-
sualized through an ensemble display compared to a 95% confidence
interval plot.

3 METHODS

3.1 Materials & Procedures
The domain of our experiment was the Coronavirus (COVID-19)
pandemic. We presented participants with time series plots of the
number of hospital beds occupied by COVID-19 patients. In an
introduction, we explained participants how to read time series plots
and uncertainty information in time series forecasts. Instructions
were simple and short in order to reduce cognitive load [3]. The
participants’ task was to forecast how the time series will develop
in the future. More specifically, they had to make forecasts for
three points in time (i.e., in 7 days, in 14 days, in 21 days) for nine
different countries. Names of countries were hidden and their order
was randomized. For each of the nine countries, the task comprised
the following two steps:

1. We showed participants the historical development of the num-
ber of occupied hospital beds due to the COVID-19 pandemic.
Figure 2 shows an example of such a time series. Based on
this information, they had to make forecasts for t+7, t+14, and
t+21 days.

2. After submitting their own forecasts, we provided an algorith-
mic forecast from a Bayesian structural time series model. This
forecast could contain different information about the uncer-
tainty of the predictions. After seeing the algorithmic forecasts,
participants had the chance to adjust their own forecasts.

Figure 1 shows an example of the user interface in the second
step. As participants change their predictions in the first or second
step, the point predictions are interactively adjusted in the diagram.
In the first step, the point predictions for t+7, t+14 and t+21 are
anchored at the value of t. User inputs from the first step form the
anchors for the point predictions in the second step.



Figure 1: Example of a user interface for a CI in the second step.

In order for participants to become familiar with the procedures
and materials, we defined the first three tasks as warm-up tasks and
excluded them from the subsequent data analysis.

3.2 Participants & Conditions

We invited 126 first-year Bachelor students (Management Informa-
tion Systems) to participate in the experiment. They could choose
to participate in the online experiment between June 8th and June
14th, 2021. Students received a performance incentive in the form
of exam bonus points for their participation. Not participating in the
experiment did not results in any penalty. 84 of the invited students
participated in the experiment. If a participant’s data was incom-
plete, they were excluded. Furthermore, if a participant completed
the experiment too fast (i.e., less than 90 seconds for all 9 tasks) or
too slow (i.e., more than two standard deviations above the mean
participation time), their data was excluded. This prevented par-
ticipants from just “clicking through” the experiment. Five of the
participants were excluded due to these criteria.

There were three conditions in the experiment, varying how pre-
dictive uncertainty of the algorithmic time series forecast was visu-
alized. For each task, participants were randomly assigned to one
of the three conditions. Hence, all participants were exposed to all
three conditions over the course of the nine tasks.

A point estimate with no uncertainty information is the first con-
dition and serves as control group. Figure 3 shows an example.

The treatment for the second condition was a confidence interval
(CI) plot, showing the most probable prediction as well as a 95% CI
around it represented by a shaded area. We derived the CI from a
posterior predictive distribution of a Bayesian structural time series
model.2 Figure 4 depicts an example of the CI plot.

2Since the predictive model used in this study was a Bayesian model, the

Our third condition was an ensemble display. We generated the
lines of the ensemble by sampling from the posterior predictive
distribution of the Bayesian structural time series model. In our
experiment, we displayed twenty random draws from the model.
Figure 5 shows an example.

3.3 Model Specification
Inspired by the experiments of Poursabzi-Sangdeh et al. [25] and
McGrath et al. [20], we operationalized ’willingness to follow pre-
dictions’ by two variables. First, the difference between the first
and second prediction served as a measurement for the adjustment
due to seeing the algorithmic prediction. Adjustment captures the
extent to which participants have updated their own prior belief after
seeing the algorithmic prediction and uncertainty specification [20].
Second, the difference between a participant’s final prediction and
the algorithmic prediction served as a measurement for the disagree-
ment between human and algorithm. If there are large discrepan-
cies between the algorithmic predictions and the participants’ final
predictions, then the participants obviously did not attach a lot of
importance to the model’s forecasts in their own decision.

We used Bayesian hierarchical and multi-level models with vary-
ing intercepts for condition, participant, and task. As dependent
variable Y we used either adjustment3 or disagreement. We defined
each of the nine countries as a task. An observation i was defined

uncertainty intervals were actually credibility intervals. Yet, our participants
were more familiar with confidence intervals than credibility intervals due to
their previous statistics courses. Furthermore, the visualization of credible
intervals is similar to the one for confidence intervals. Therefore, we labeled
credible intervals as confidence intervals in our experiment.

3As for some participants the adjustment variable was zero, we added
a small amount (0.001) to adjustment values to avoid errors due to the
undefined logarithm of zero.



Figure 2: Historical development of a COVID-19 hospitalization time
series.

Figure 3: Line plot of point estimates without uncertainty.

as a participant-task combination. For each participant, the order
of the tasks and the condition for each task were randomized. This
resulted in the following generic model specification:

log(Yi) = γcondition[i]+πparticipant[i]+ τtask[i]+ εi

In addition to calculating condition mean effects, we also calcu-
lated the contrasts between conditions to assess whether there are
any significant differences between conditions.

4 RESULTS

4.1 Model-Free Evidence
A total of 474 predictions, that is participant-task combinations, were
collected during the experiment. The distributions of the predictions
are shown in Figure 6. Eyeballing the violin plots suggests that when
participants were shown ensemble displays, they adjusted less after
seeing the model’s forecasts and disagreed more with the model’s
forecasts.

We also calculated the absolute error between participants’ initial
forecasts and the true values (Mean: 31.46, Median: 17.70) and
between the algorithmic forecasts and the true values (Mean: 33.22,
Median: 10.86). The clearly lower median error suggests that partic-
ipants should have followed the model in order to minimize overall

Figure 4: 95% CI plot. Mean value of 1000 simulations in red, 95%
confidence interval in gray.

Figure 5: Ensemble display for prediction. Most probable prediction in
red, other likely results in gray.

forecasting error (the approximately even means resulted from large
outliers).

In summary, the model-free results surprisingly indicate a poten-
tial negative effect of uncertainty visualization on the willingness to
follow a model’s predictions; although the model’s forecasts were
more precise than the manual forecasts in most cases.

4.2 Estimation results
To get a clearer picture of these patterns, we calculated the differ-
ences of mean effects between conditions (see Table 1).

Neither for adjustment (0.05 [-0.57, 0.69]) nor for disagreement
(-0.01 [-0.25, 0.23]) we found significant differences between CI
plots and point estimate plots with no uncertainty. This does not
confirm H1a, that people are more likely to follow the predictions
of a time series forecasting model when predictive uncertainty is
visualized through a 95% confidence interval plot compared to no
visualization of uncertainty (control group).

Regarding the contrasts between ensemble displays and plots
of point estimates with no uncertainty, we found significant differ-
ences for both adjustment (-0.79*** [-1.47, -0.10]) and disagreement
(0.37*** [0.11, 0.62]). However, the observed effects go into the op-
posite direction of our hypothesis H1b that people are more likely to
follow the predictions of a time series forecasting model when predic-
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Figure 6: Violin plots for ln-transformed values of adjustment (top)
and disagreement (bottom) by conditions.

tive uncertainty is visualized through an ensemble display compared
to no visualization of uncertainty (control group). Because ensem-
ble displays lead to less adjustment and more disagreement, we
can infer that in ensemble display conditions, participants followed
the forecasting model to a lesser extent than in the no uncertainty
condition.

Finally, we tested H2 that people are more likely to follow the
predictions of a time series forecasting model when predictive uncer-
tainty is visualized through an ensemble display compared to a 95%
confidence interval plot. We found significant differences in both ad-
justment (-0.86*** [-1.73, -0.16]) and disagreement (0.38*** [0.12,
0.62]) between the ensemble display and CI conditions. Again, the
direction of the effects goes into the opposite direction of our hy-
pothesis. In the ensemble display conditions, participants followed
the model less than in the CI condition.

5 DISCUSSION

Uncertainty is an important factor for making informed decisions.
This paper extends the existing body of knowledge by examining
the effect of visualizing predictive uncertainty on users’ willingness
to follow the predictions of a time series forecasting model. Surpris-
ingly, our findings contradict most prior empirical results and also
our own hypotheses.

First, we could not confirm that participants are more likely to
follow predictions of a time series forecasting model when predictive
uncertainty is visualized through a 95% CI plot compared to no
visualization of uncertainty (H1a).

Second, we could also not confirm that ensemble displays are
more likely to result in participants following the algorithm com-
pared to point estimates with no uncertainty visualizations (H1b).
On the contrary, we observed the opposite of what we initially hy-
pothesized.

Third, we were also unable to confirm that participants are more
likely to follow predictions of a time series forecasting model when
predictive uncertainty is visualized through an ensemble display
compared to a 95% CI plot. Again, we observed the opposite of our
initial expectations. Our empirical results suggest that more salient

Table 1: Condition mean effects and contrasts of adjustment and
disagreement along conditions.

Adjustment

Condition mean effect Estimate 95% CI
Point 0.26 [-1.72, 2.28]

CI 0.32 [-1.64, 2.34]
Ensemble -0.53 * [-2.49, 1.46]

Contrasts between conditions Difference 95% CI
H1a: CI - Point 0.05 [-0.57, 0.69]
H1b: Ensemble - Point -0.79 *** [-1.47, -0.10]
H2: Ensemble - CI -0.86 *** [-1.73, -0.16]

Disagreement

Condition mean effect Estimate 95% CI
Point 2.48 *** [1.37, 3.59]

CI 2.47 *** [1.36, 3.57]
Ensemble 2.84 *** [1.74, 3.95]

Contrasts between conditions Difference 95% CI
H1a: CI - Point -0.01 [-0.25, 0.23]
H1b: Ensemble - Point 0.37 *** [0.11, 0.62]
H2: Ensemble - CI 0.38 *** [0.12, 0.62]

Notes: Significance levels: * 90%, ** 95%, *** 99% CI does not contain 0.

visualizations of uncertainty lead to decreased willingness to follow
algorithmic forecasts.

Most studies on uncertainty visualization only test effects rather
than provide explanations for the observed effects [10]. To this
end, in the following we synthesize insights from different theo-
retical research streams on decision-making and uncertainty visu-
alization. Padilla et al. [22] presented a cognitive framework for
visual decision-making. Figure 8 shows an extract of the framework.
According to the framework, people use a graph to find an answer to
a conceptual question. An instantiated graph schema is the interpre-
tation of a mentally constructed visual description of a raw visual
array. During the message assembly process people try to extract a
conceptual message from the instantiated graph schema; a process
which is influenced by the conceptual question at hand. Conceptual
messages subsequently influence decision-making processes, which
in turn inform behavior.

The original model addresses decision-making in general. In the
following, we instantiate the original framework by focusing on the
special case of visualizing predictive uncertainty. An effective uncer-
tainty visualization is an example of an instantiated graph schema.
If an uncertainty visualization is effective, and aligns with the ques-
tion at hand, the message assembly process results in a conceptual
message expressing a higher degree of uncertainty awareness. To
explain how the message of high uncertainty informs participants’
decision-making and behavior, we draw on psychological research
about advice giving and taking. Specifically, prior research, as sum-
marized by Bonaccio et al. [4], found that an advice-seeker is less
likely to follow advice if he or she has the impression that the advice-
giver is uncertain. Therefore, greater uncertainty awareness should
lead to less advice utilization. To sum up, more effective uncertainty
visualizations lead to higher uncertainty awareness (left hand side of
Figure 8), which lead to reduced advice utilization (right hand side
of Figure 8).

Applying this model to our empirical results suggests that point
and CI plots were similar in their effectiveness of uncertainty visual-
ization. A reason could be that for both plots participants focused
on the mean values and discarded the actual confidence intervals.
Ensemble displays, in contrast, seemed to be a more effective way
of uncertainty visualization. They show multiple possible future
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Figure 7: Contrasts between conditions for adjustment (top) and
disagreement (bottom).

scenarios and do not explicitly show their mean value, which may
lead to more uncertainty awareness and, in turn, less advice utiliza-
tion. In other words: Becoming aware of the uncertainty of the
algorithmic advice giver, advice seekers probably decided to not
follow the advice and stay with their initial manual predictions.

Our findings have several implications for practice and research.
If visualization of uncertainty has an impact on the decision-making
process, it can be exploited strategically. This is a double-edged
sword. On the one hand, there are good arguments for following
algorithmic predictions, as they tend to be more accurate than manual
predictions [8]. On the other hand, from an ethical point of view,
people should not blindly follow algorithms [28]. Visualization of
uncertainty is therefore a tool which should be used purposefully
and with caution.

6 LIMITATIONS & OUTLOOK

As our experimental results surprisingly contradict prior empiri-
cal studies, we argue for more studies on the effect of visualizing
predictive uncertainty on decision maker’s willingness to follow al-
gorithmic advice. Most importantly, we need a better understanding
of the causal mechanisms between different types of uncertainty
visualizations and different types of user tasks. The framework for
visual decision-making [21] is a promising theoretical foundation
for this, but needs to be instantiated for more concrete domains and
tasks.

In addition, in future work our experiments should be replicated
and extended with regards to other tasks and visualizations. For
example, uncertainty range width, the coloring of graphs, and la-
beling of graphs may have an influence on the perceived predictive
uncertainty [29].

Of course, our study is not without limitations. First, the reward of
participants in our experiment did not depend on their performance
in the experiment. We communicated that when participants com-
pleted all tasks conscientiously, they would receive their exam bonus
points. But we intentionally only loosely defined ”conscientiously”
as depending on certain proximity measures to prevent opportunistic
behavior. Future research may test whether participants’ incentives
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Figure 8: Instantiated extract from the model of visualization decision-
making adapted from Padilla et al. [21].

influence the degree to which they follow algorithmic predictions.
In addition, Management Information Systems students tend to be
data-savvy and open-minded towards technology. Other user groups
may have different background knowledge of and attitudes towards
algorithmic recommendations and uncertainty visualizations. Hence,
future research should investigate whether user groups with differ-
ent knowledge of and attitudes towards algorithms may be influ-
enced differently. In addition, strong opinions of participants about
COVID-19 may have biased the results. However, randomization
should have equalized such non-structural differences.

In addition, further research is needed to address the question why
exactly participants adjusted their predictions. The reason could be
an actual increased awareness of uncertainty, as argued above, or
an unconscious reaction to a visual stimuli (e.g., anchoring on the
mean line or decreased perceptual accuracy without a mean line).
For example, point estimates and CI may have facilitated perception
of algorithmic predictions due to their lower visual complexity,
whereas random posterior draws may have confused participants.
An examination of incentive-based decision-making, as well as
qualitative criteria, can also extend the findings of this study.

We focused on static visualization techniques because they are
most universally applicable across all media and, based on the media
examples we identified, are most common in the use case under
consideration. Comparisons with other visualization techniques,
particularly dynamic ones such as Hypothetical Outcome Plots,
represent another promising area of research.

Furthermore, prior research has documented learning effects in
visualization experiments [15]. We tackled this potential threat to
validity by randomization and a relatively small amount of tasks.
Future research should examine how different visualizations influ-
ence users’ decision-making with regards to the ordering of and time
spend with visualizations, as well as the familiarity with a subject
area or task.

Finally, the anchoring of initial values on the value in t may have
distorted the results of the predictions for t+7, t+14 and t+21 before
the algorithm was shown [31]. Therefore, future research might
investigate whether different anchors have an impact on people’s
willingness to follow algorithmic forecasts.
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