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ABSTRACT

We present evaluation results of our enhancements to the Security in
Process System [14] developed by Lohfink et al. to support triage
analysis in operational technology networks. To ensure fast and
appropriate reactions to anomalies in device readings, this system
communicates anomaly detection results and device readings to
incorporate human expertise and experience. It exploits periodi-
cal behavior in the data combining spiral plots with results from
anomaly detection. To support decisions, increase trust, and support
cooperation in the system we enhanced it to be knowledge-assisted.
A central knowledge base allows sharing knowledge between users
and support during analysis. It consists of an ontology describing
incidents, and a data base holding collections of exemplary sensor
readings with annotations and visualization parameters. Related
knowledge is proposed automatically and incorporated directly in
the visualization to provide assistance that is closely coupled to
the application, without additional hurdles. This integration is de-
signed aiming on additional support for correct and fast detection
of anomalies in the visualized device readings. We evaluate our
enhancements to the Security in Process System in terms of ef-
fectiveness, efficiency, user satisfaction, and cognitive load with a
detailed user study. Comparing the original and enhanced system,
we are able to draw conclusions as to how our design narrows the
knowledge gap between professional analysts and laymen. Further-
more, we present and discuss the results and impact on our future
research.

Index Terms: Security and privacy Intrusion—anomaly detection
and malware mitigation; Human-centered computing—Visualization
systems and tools

1 INTRODUCTION

Modernization and Industry 4.0 lead to the connection of opera-
tional technology (OT) and information technology (IT) networks
that were separated before. Without this physical separation, and
equipped with modern, high level components, OT networks become
vulnerable to attacks, especially since they are often less secured
than deemed appropriate for home and office IT [8]. Efforts and dif-
ficulties that need to be overcome when securing OT networks lead
to recent research in cyber security with the aim to detect attacks
in available information, such as sensor and actuator readings dur-
ing production. To ensure short reaction times in spite of the large
amount of data that needs to be analyzed, automated anomaly detec-
tion algorithms that often incorporate machine learning approaches
are applied. While being fast, anomaly detection algorithms are
subject to uncertainty, requiring to incorporate human experience
and expertise in the alarm chain. This approach is followed and
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Figure 1: The Security in Process System: the three main parts
are the time slider A, the spiral chart B and the options panel C. The
time slider provides overview over the complete data set and indicates
areas with warnings and alerts. In the spiral chart, readings and
abnormality ratings of devices are shown by color and line thickness
respectively. Reproduced from [14].

visually supported by Lohfink et al. with the Security in Process
System (SiP) [14].

The SiP System was developed to be used by professional analysts
and laymen. To increase trust in its machine learning components
and diminish knowledge differences between different analysts, we
incorporated knowledge assistance in the system. Furthermore, our
enhancements render collaboration between analysts possible and
facilitate knowledge transfer from professional analysts to laymen.

We realized these enhancements based on the Knowledge Rocks
Framework [13] and integrated a knowledge base in SiP to provide
easily accessible support for analysts. As part of this knowledge
base, we defined an ontology with callback functions that is able
to classify detected anomalies automatically using procedural and
machine learning approaches. Based on this classification, stored
instances of anomalies from the knowledge base are proposed to the
analyst: stored readings are shown using the same visual encoding
as used for the readings of the currently analyzed data set in the
enhanced time slider. Selecting a proposed instance, its annotations
from the knowledge base are shown and its readings are added to the
spiral plots of all contained sensors, by combining the spiral plots
with a stream graph.

To evaluate our design of the knowledge-assisted, enhanced SiP
(eSiP), we performed a detailed user study, focusing on the compari-
son of SiP with, and without knowledge assistance. The results of
our study show that using eSiP, more anomalies and false positives
were identified correctly. We furthermore observed a learning ef-
fect in terms of task completion time for correct responses in both
systems. Overall, SiP with assistance turned out to be the preferred
system and to decrease discrepancies in effectiveness and satisfac-
tion between users with and without experience in visual analytics.
The improved satisfaction and success rates suggest that the system
is successfully supporting laymen in cyber security. Considering
these results, we believe that knowledge assistance will increase user
acceptance as well as trust in the system.
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Figure 2: The incident based ontology in eSiP. A detailed descrip-
tion of classes and callback functions is given in the supplemental
material. Reproduced from [13].

2 RELATED WORK

Knowledge-assisted visualization aims to incorporate knowledge
into the visualization process to support users [16]. Its utility is
well understood: already in the late 90’s, Fujishiro et al. devel-
oped the GADGET system that supports users in choosing suitable
visualization systems for their goals under given constraints (e.g.
data properties) [5]. Examples from cyber security visualization are
KAMAS, developed by Wagner et al. [20], and the QCAT analytics
system by Walton et al. [21]. KAMAS is a knowledge-assisted visu-
alization system for behavior-based malware analysis. Its knowledge
base consists of behavior patterns that are extracted from recorded
data. The QCAT analytics system aims on anomaly detection us-
ing Queries with Conditional Attributes (QCATs), which are stored
in the knowledge base. Both systems have a similar structure and
aim on collaboration. Their knowledge bases can be browsed, the
contents applied, changed and new defined by the user.

An analysis of further examples for knowledge-assisted cyber
security was given by Böhm et al. [1]. Their full list of analyzed
papers and results is available at http://bit.ly/2LgrG3p. Böhm
et al. found, that collaboration tools are up to now rarely found in
cyber security. With our system, we contribute to closing this gap.

For related work concerning SiP, that is concerning time series
visualization, anomaly detection in time series and detection and
visualization of periodic behavior, we refer to the Security in Process
paper [14]. Backgrounds and related work on knowledge-assisted
visualization, underlying models, its concrete implementation in
systems, and the use of ontologies in these systems are given in the
Knowledge Rocks paper [13].

2.1 The Security in Process System
SiP visually supports triage analysis in OT networks. Since in OT-
networks, components and used protocols oftentimes don’t allow the
implementation of security measures, these need to be implemented
based on existing information –that is readings of sensors and actu-
ators (devices) in the system. Using these readings, SiP scans for
abnormal behavior (incidents) using machine learning tools. Three
approaches for anomaly detection based on the periodic nature of
readings in OT-networks were evaluated by Duque Anton et al. [4],
namely one-class support vector machines, isolation forests and
matrix profiles. Matrix profiles turned out to be the most suitable
approach due to their robustness to different kinds of data, their
applicability without the requirement of extensive training and the
obtained results. They have been presented by Yeh et al. [22].

The result of the automated anomaly detection is an anomaly
score for the readings of every device. This score represents the
conformity of the current readings with previous readings and is
categorized as “normal”, “warning” and “alert” based on its height

(a)

(b)

periods with potentially abnormal behaviorselected time frame,

selected instance instances with 3 and 2 components
stored annotation

components that are 
contained in the 
hovered instance

analyzed
data

related
instances

Figure 3: Original (a) and enhanced time slider (b): combining the
time slider functionality with a linegraph, the time slider now gives an
overview of the readings of all devices and realted instances from the
database. Reproduced from [13].

and adaptable, application dependent boundaries. The anomaly
score and the readings are then visualized to allow the analyst to
revise them and react accordingly. To exploit the periodical behavior
of industrial processes, spiral plots encode the readings as color.
The abnormality rating is given as line thickness, where thin lines
represent normal behavior (spiral plots in Figure 1B). Users can
select the shown time frame in the time slider and change the period
of the individual spiral plots (Figure 1A). The time slider represents
the complete data set, and reflects increased anomaly ratings of
intervals with warning and alert signs.

The used data set contains readings from PLCs monitoring a
modern water treatment process. Polluted water is treated in six
stages and checked by different sensors until it is clean or re-enters
the process. The readings of the system behavior under different
attacks and in normal mode are provided by the iTrust, Centre for
Research in Cyber Security, SUTD [9, 15].

3 ESIP - ENHANCING SIP WITH KNOWLEDGE ASSISTANCE

To increase trust in the SiP System, we enhanced it with a knowl-
edge base to amplify the support for anomaly detection and render
collaboration possible. To do so, we used the Knowledge Rocks
framework and created a knowledge base that consists of an ontol-
ogy and a connected database where events of interest are stored
with their classification. eSiP was implemented using D3.js [2] and
python 3, framed by bottle [7]. All details on the system design and
enhancements are given in the Knowledge Rocks Paper [13].

3.1 Implementation of the Knowledge Rocks Frame-
work

Since SiP deals with incidents, we defined the ontology part of the
knowledge base accordingly (Figure 2). Coupling the ontology with
callback functions, eSiP is able to classify input data automatically,
and to suggest fitting instances from the database. This is done based
on the classification of the instances and the distance between stored
instances and the analyzed data calculated based (like the anomaly
detection) on the matrix profile method. A detailed description of
the ontology classes and callback functions, that allow the traversal
of the ontology, are given in the supplemental material. To be
able to classify incidents, procedural as well as machine learning
approaches (namely isolation forests) are employed.

To integrate the knowledge base in SiP, we enhanced the time
slider, the spiral plots, and added an ontology visualization. Possible
workflows are illustrated in the supplemental material.

The Enhanced Time Slider. We combined the time slider func-
tionality with a linegraph as described by Kincaid et al. [12]; a
comparison of the original and enhanced time slider is given in Fig-
ure 3. The linegraph shows the current data set, with highlighted
intervals of increased anomaly rating as in the original time slider.
The additional information provides an overview of the complete
data set and thus increases reproducibility of the anomaly detec-
tion results that rely on pattern matching in the data. Optionally,
the devices’ readings are clustered such that similar patterns are

http://bit.ly/2LgrG3p


Figure 4: Hovering an instance: contained devices are highlighted
in the time slider and the spiral chart. Annotations are shown for
contained devices and the instance.

adjacent in the time slider, adapting the order in the spiral chart
accordingly. Similar to the original version of the time slider, the
selection frame –indicating the interval that is currently shown in
the spiral plots– can be re-positioned via drag and drop and its width
can be changed using handles.

Below the time slider, following its visual encoding and device
order, related instances from the database are suggested, based on
the classification of the currently analyzed data. These instances
can be selected via mouse click and moved relative to the analyzed
data via drag and drop. The initial position of every instance is
the position resulting from the minimum distance between data
and instance using matrix profiles. Hovering a suggested instance,
contained devices are highlighted in the time slider and spiral charts,
and stored annotations are shown (Figure 4). Holding Alt when
selecting a related instance, visualization settings from the database
are prescribed. The stored settings are period, color map, and color
map reference frame.

The Enhanced Spiral Plot. We enhanced the spiral chart –
showing the selected interval of the data set– to additionally contain
selected instances. To do so, we combined the spiral plot with a
stream graph (Figure 5a,b) similar to the approach by Jiang et al. [10].
The analyzed data is the innermost spiral and the line thickness of
data and instances (indicating the anomaly score) accumulates. At
the beginning of a selected instance, a handle is shown that allows
re-positioning of the instance relative to the analyzed data, similar to
dragging the instance below the time slider. Selected instances have
the same period as the analyzed data to prevent misinterpretation.

Identifying abnormal high or low values was a challenging task
in SiP: only professional analysts, knowing the normal range of
sensors, could identify them without relying on an abnormality in
the pattern. In eSiP, a classification as “Abnormal Values” triggers a
visual cue; the interval containing the abnormal values is highlighted
(Figure 5c).

To avoid overlapping between spiral twists if multiple instances
are selected or the anomaly rating is high, we limited the thickness
of each strand. If necessary, this limit is reduced automatically.

Ontology Visualization. Visualizing the ontology supports the
user in revising the automated classification and (re-)classifying data
if necessary. In addition, it provides a common vocabulary to talk
about incidents, decreasing the knowledge gap between professional
analysts and laymen. We implemented a basic ontology visualization
in a browsable tree layout, similar to Figure 2.

3.2 Increasing Reproducibility and Trust

Both –the original SiP and the eSiP– use machine learning ap-
proaches for anomaly detection and incident classification respec-
tively. The design of our enhancements to the SiP System aim on
decision support and generating trust towards the results of these
approaches. The enhanced time slider provides a holistic overview
over the analyzed data and hence the base for the automated anomaly

detection, making its results more comprehensible and justified for
the user. The enhanced spiral plot communicates the results of both,
the automated classification via visual cues and annotations, and the
anomaly detection via alert and warning signs and line thickness.
The detailed comparison of stored incidents with the current read-
ings in the enhanced spiral plot aims on increasing trust in anomaly
detection results (if they fit the stored results), or the overall system
by providing decision support (opposing the anomaly detection re-
sult if required). Providing direct access to the acting ontology, its
classes and callback functions and their documentation increases
the reproducibility of classification results. Furthermore, our design
aims on providing knowledge of professional analysts to laymen,
for example via the terminology and structure of the ontology and
example results from analysis performed by experts. Doing so, we
hope to decrease the discrepancy in terms of effectiveness between
professional analysts and laymen, resulting in a higher over all ef-
fectiveness and rendering effective collaboration possible.

3.3 Collaboration
Our system supports distributed and asynchronous collaboration,
that is the analysts are neither required to be in the same location,
nor to interact at the same time. With regard to the map of groupware
options presented by Johansen [11], this corresponds to the different
time/different place category. Using our system, all interaction takes
place via stored incidents and annotations in the knowledge base.
This enables laymen to benefit from expertise and experience of
professional analysts, narrowing the knowledge gap between them.
The knowledge base holds exemplary data for every stored incident.
This allows everybody to comprehend the reasoning behind the
classification of an incident and enables people to discover similar
patterns independently. As a consequence, the knowledge base is a
valuable collection of examples that can also be used for educational
purposes. In our evaluation, we focus on the benefits individual
users gain from the knowledge base. We chose this focus since
the system is currently not in use, resulting in a limited knowledge
base and a lack of operators that could take part in our user study.
Together with an evaluation of the operational system, increasing
the possibilities for direct interaction between users will be part of
our future research.

4 EVALUATING KNOWLEDGE ASSISTANCE

4.1 Experimental Design and Procedure
We performed an online user study with 15 participants (6 female, 9
male, age 24 - 44) to evaluate the usability of eSiP. Since the system
aims to close the knowledge gap between professional analysts and
laymen in cyber security, we compare the performance of laymen
with and without knowledge assistance i.e., evaluating the impact of
the ontology and knowledge base that was established with the help
of professional analysts.

We conducted our study with a heterogeneous group of partic-
ipants: 13 participants reported to have a technical background
(IT/electrical engineering). We furthermore recorded the number
of participants having experience in visual analytics (7), with spiral
plots (5), and with SiP (3). We consider the effective, efficient, and
satisfying individual interaction with the system to be a necessary
requirement for successful collaboration in a heterogeneous group of
system users. To address this first step, the present study investigates
system usage on an individual level.

A within-subject design was used to evaluate how system usability
is affected by the knowledge assistance incorporated in eSiP: Each
participant completed the tasks T1 - T3 with (eSiP) and without
(SiP) knowledge assistance. Tasks T4 - T5 require features that are
new in the eSiP and were hence not performed in SiP. We provide
details on the tasks in Section 4.2. To avoid learning effects, the
order of the systems was assigned randomly. In total, 9 participants
started with SiP and 6 with eSiP. Prior to each task, we provided an
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Figure 5: Original (a) and enhanced spiral plot (b): selecting an
instance, it is added to the spiral plot - stream graph combination.
Else, it remains as in (a). (c) Abnormal high values are highlighted.

explanatory video to introduce the system and establish a common
knowledge basis. Each video had to be watched at least once and
could be replayed throughout the completion of the task.

In line with ISO 9241 - 11, we assessed usability via effectiveness,
efficiency, and satisfaction. To this end, we measured success rates
and task completion times (TCTs) throughout the experiment. Fur-
thermore, we posed questionnaires about satisfaction and cognitive
load after the completion of the tasks with SiP and eSiP respectively.
At the end of the experiment, we asked for the preferred system.

4.2 Tasks
�T1 Risk evaluation. In this task, we presented readings rated
as warnings by the automated anomaly detection. The participants
were asked to decide whether the readings are abnormal or normal
in four sub-tasks, where three contained abnormal, and one normal
sensor readings. Using eSiP, proposed incidents from the knowledge
base support this decision by providing knowledge of professional
analysts on comparable readings, aiming on an increase in trust in
the system.
�T2 Alert revision. The participants were asked to check readings
that were rated as attacks for abnormal behavior, and identify each
example as true (two examples) or false positive (one example).
Again, stored incidents from the database could be selected using
eSiP, supporting the decision.
�T3 Determining periods. The participants were asked to use the
period slider to find the period of the shown sensor readings. Three
different examples were used in this task: one example with one peak
per period and two examples with two peaks per period. Using eSiP,
participants could apply stored periods to the spiral plots. Since
stored periods have been determined by humans, they are likely
to be more accurate than the automatically detected period that is
proposed by the system. Hence, if a matching incident is stored in
the knowledge base, this incident is on the one hand able to increase
trust in the system by proposing appropriate period and visualization
settings. On the other hand, the patterns that occur when the correct
period is set in the spiral plot reassure the user in the assessment of
the correspondence between the current readings and the selected
incident.
�T4 Spotting irregularities. To evaluate the enhanced time slider,
we presented a time slider containing an anomaly and asked the
participants to enter the start time of a suspicious pattern. The
required information to do so are are not contained in the original
time slider, but only in the enhanced time slider. Hence, this task is
only performed with eSiP.
�T5 Incident classification. In this task, incidents in the sensor
readings had to be classified according to the ontology. A detailed
knowledge of the ontology that is used for classification and propos-
ing incidents, increases the reproducibility of automated choices by
the system, and thus trust in its decisions. To this end, we provided
four out of five enhanced spiral plots representing a pattern disrupt,

period disrupt, phase shift, frequency shift, and abnormal high val-
ues along with a picture of the ontology and background information
on frequency and phase of signals.

4.3 Implementation of the Online Evaluation Tool
Due to the COVID-19 pandemic, our study was carried out remotely;
participants independently navigated through our web-based evalua-
tion tool that guided them through different tasks that were solved
using SiP or eSiP. In the beginning, they were asked to give personal
information and watch a video explaining the purpose of the system.
Each participant used both, SiP and eSiP whereby the first system
was assigned randomly. After watching the explanatory video at
least once, the participant could click a start button to see the task de-
scription and start the timer. Depending on the task, the participants
had to provide their answer via single choice (�T1, �T2, �T5)
or via entering a number (�T3, �T4). Clicking a submit button
stopped the timer for the respective example and either immediately
started a new timer while showing the next example, or lead the
participant to the next task. For each participant, the collected data
was saved in json files on the server (see supplemental material).

4.4 The Knowledge Base
As described above, the knowledge base consists of the acting ontol-
ogy and a database that holds instances of data that contain different
incidents. The acting ontology was developed in cooperation with
professional analysts and will hardly change in the operational phase.
The content of the data base on the other hand is expected to change
and grow. We faced the challenge, how to populate the data base
with incidents that can be used in the user study, on a task-driven
base. For every task that is executed with eSiP, we added incidents to
the knowledge base that represent a spectrum of possible related inci-
dents, specifically for the data used in the task. Like this, we avoided
influences of the automated classification on the evaluation results
(which also incorporates the influence of trained ML approaches).
Further, this decreased the complexity of required operations and
hence prevented waiting times during the evaluation, even if many
people evaluated the system at once.

4.5 Results
Effectiveness. We assessed effectiveness in terms of success rates.
To this end, we measured whether participants selected the correct
response option in tasks �T1, �T2, and �T5. For �T3 we accepted
answers in a range of 500s; for �T4 the frame for correct responses
was 960s wide. Both ranges were determined example based.

Comparing eSiP and SiP, higher success rates were found for
eSiP in �T1 and �T2. As shown in Figure 6a, we found that eSiP
especially supports the correct detection of anomalies and false
positives, which is the main purpose of both systems. Using eSiP,
the participants identified more presented anomalies (64%) than
with SiP (47%). In �T2, the false positive example was identified
by 67% of the participants using eSiP but only by 13% using SiP.
Concerning �T3, both systems performed equally well in terms of
success rates. In total, 89% of the periods were determined correctly,
affirming the suitability of spiral plots for periodic behavior.

Decreasing the discrepancy in effectiveness between visual ana-
lytics experts and novices is an important requirement for effective
collaboration between them. Comparing participants with (7) and
without (8) experience in visual analytics, we found that the absolute
difference between success rates of the two groups was lower for
eSiP than for SiP (Figure 6c). Hence, our enhancements of the
system helped aligning the effectiveness for participants with and
without experience in visual analytics.

�T4 and �T5 were only performed with eSiP. We found a par-
ticularly high success rate (93%) in �T4, showing that anomalies
can be detected effectively with the additional information provided
by the enhanced time slider. Using our ontology, 31% of the pattern
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Figure 6: Evaluation results for effectiveness (a) assessed via success rates and satisfaction (b) assessed via questionnaire: Using eSiP more
abnormalities and false positives were detected than with SiP; all examples containing abnormal high values were classified correctly with the
visual cues in the enhanced spiral plot (a). The results in (b) (quartiles, median (green), data range and outliers) show that eSiP was rated to
have more supportive functions and possibilities to navigate, to be better suited for the task, easier to relearn, and more satisfying to interact
with. Absolute discrepancy in effectiveness (c) and satisfaction (d) between participants with and without experience in visual analytics. For
the majority of tasks and questions the absolute difference between success rates (a) and median questionnaire ratings (b) of experienced and
unexperienced users is lower when using eSiP compared to SiP.

and 38% of the period disruptions were classified correctly. Phase
shifts (55%) and frequency changes (77%) were identified more
often. 100% of the examples representing abnormal high values
were classified correctly, demonstrating the high effectiveness of the
visual cue in the enhanced spiral plot.

Efficiency. Throughout the experiment we recorded TCTs to
assess efficiency. We measured a median TCT of 45s for �T4 and of
173s for completing the four examples in �T5. To compare SiP and
eSiP, we considered the TCT of the fastest correct response for �T1,
�T2, and �T3. Comparing the respective TCTs for each participant,
we did not find that one of the two systems generally leads to a faster
completion of the tasks. Instead, we found that most participants
were able to complete �T1 (80%) and �T3 (93%) faster with the
second system (SiP or eSiP, depending on starting condition). For
these participants, we measured an average TCT decrease of 52%
in �T1 and of 43% in �T3 when comparing the fastest correct
responses using the first to using the second system. We interpret
this decrease in TCT as increasing trust and high learnability of the
system.

Satisfaction and Cognitive Load. To assess and compare the
user satisfaction of SiP and eSiP, the participants filled a question-
naire and selected their preferred system. Similar to [14], they should
indicate their agreement with 11 statements on a five-level Likert
scale (predominantly disagree (1) - predominantly agree (5)) about
the systems suitability for the tasks, controllability, conformity with
user expectations, learnability, and overall satisfaction.

As presented in Figure 6b, the functions offered by eSiP were
rated to be more supportive (Q1) and the software to be more suited
for task performance (Q3). Similarly, the navigation in eSiP was
rated better than in SiP (Q6). Both systems received relatively
low scores in Q2, indicating that the number of steps to perform a
task is adequate. We believe that the slightly higher score assigned
to eSiP reflects the available knowledge assistance functions. Both
systems received especially high scores concerning the predictability
of results (Q7). It is easier for the participants to relearn eSiP (Q9)
and the overall interaction with eSiP was rated more satisfying (Q11).
In total, 80% of the participants preferred eSiP over SiP, affirming
that knowledge assistance is indeed helpful.

We observed that for most questions the absolute discrepancy
between the median rating of participants with and without experi-
ence in visual analytics was lower for eSiP than for SiP (Figure 6d).
Again, we interpret this decreasing discrepancy (i.e., a more equal
level of satisfaction) as a result of the knowledge assistance features
incorporated in eSiP.

Since cognitive overload could impede the fast and correct identi-
fication of attacks during extended periods of usage, we measured
cognitive load via the NASA-task load index [6]. To compute the
weighted rating (0 – 100), we followed the procedure described
in [17]: the participants were asked to rate mental, physical, and
temporal demand as well as performance, effort, and frustration
after task completion with each system and to weight the sources of
workload at the end of the study.



While the average weighted workload rating measured for eSiP
(65) was slightly higher compared to SiP (59), we observed the
overall weighted workload and ratings for the single workload scales
to differ highly among participants and systems. In total, 6 out of 15
participants experienced lower workload with eSiP than with SiP.

4.6 Limitations
In our study the group of participants is limited to people with little
experience in cyber security. Hence, our evaluation investigates
how system usability and laymen’s performance is affected by the
ontology and knowledge base that was established with the help of
professional analysts rather than on the explicit comparison between
professional analysts and laymen. The evaluation of our goal to
narrow or close the gap between professional analysts and laymen is
thus performed implicitly: Our results show that laymen achieved
higher success rates using eSiP for tasks that would otherwise require
professional analysts. From this, we conclude that the knowledge
of professional analysts was successfully transferred to and used by
laymen.

We further found that the knowledge assistance features incorpo-
rated in eSiP helped decreasing the absolute discrepancy in effec-
tiveness and satisfaction between users with and without experience
in visual analytics. Effects concerning the experience with spiral
plots, SiP, and a technical background could not be investigated as
the respective groups of participants were unbalanced.

As the study had to be carried out remotely, the assessment of
satisfaction and cognitive load was limited to subjective feedback.
We expect observation techniques as well as the collection of physio-
logical data to deliver additional insights concerning the interaction
with the system and varying levels of cognitive load. However, these
tools were not applicable while keeping social distance.

5 CONCLUSION AND FUTURE WORK

We designed eSiP to enhance the support for triage analysis in
OT networks, increase trust in its machine learning components
and enable cooperation via the system. Based on the Knowledge
Rocks Framework, we integrated a knowledge base in the system;
automatically suggested incidents from this knowledge base are then
incorporated in the visualization, providing direct support without
additional hurdles.

The majority of participants selected eSiP as the preferred system
and rated it to be more satisfying to interact with, easier to relearn,
and its additional functions to be more supportive. Hence, we rate
our design as successful. Especially the enhanced spiral plot turned
out to be particularly supporting for the detection of anomalies and
false positives – crucial tasks in triage analysis. Supporting visual
cues resulted in an optimal recognition rate for abnormal high values.
With the additional information provided in the enhanced time slider
the participants were able to spot irregularities in the sensor readings
directly from the time slider, and results of the automated anomaly
detection algorithm became reproducible. Overall, discrepancies in
effectiveness and satisfaction between participants with and without
experience in visual analytics were reduced while using eSiP.

Due to the observed decrease in TCT from the first to the second
system, we expect performance to further increase after additional
training. We believe that in addition, appropriate training will sup-
port collaboration via the knowledge base and thus help leveraging
the benefits of the knowledge assistance provided in eSiP.

In line with Sweller [19], we believe that extraneous load, that
is the amount of cognitive load evoked by system design, depends
strongly on the user’s previously established knowledge. In order
to adjust the system design respectively, further insights regarding
the variation of cognitive load across different tasks are needed.
This could also bring further insights regarding tasks that require
“too many different steps” (Q2) in eSiP. Thus, we will take into
account continuous cognitive load assessment in the future, e.g., via

changes in pupil diameter as described in [3]. Furthermore, we will
consider tracking gaze patterns during system usage, to analyze how
eSiP’s features influence and support the user’s solution strategies.
In particular, the impact of the currently implemented and further
visual cues, and other guidance options are part of our future work.
In this study, eye tracking was not applicable due to the COVID-19
pandemic.

Based on the evaluation of individual system usage, we plan to
investigate how eSiP enhances collaboration during real-world usage.
To this end, we will recruit analysts and ask them to annotate stored
instances according to the ontology and use the annotations that were
added by other collaborators. In this setting, a further evaluation of
the enhancement’s impact on trust will also be possible.

To further promote collaboration in the system, adding unknown
incidents with a “request” for a classification and annotations by
experts will be tested. Also, increasing the possibilities for direct
interaction between users similar to messengers and comment sec-
tions for incidents will be evaluated. Since most of the decisions in
the acting ontology are based on correlation (in particular the ones
based on machine learning), but some decisions base on causality, a
distinction of these two classification sources in the system might
be of benefit for the user.

Misleading information in the knowledge base is a problem for all
knowledge assisted systems. A corrupt knowledge base can cost trust
and destroy the credibility of the system. While preventing the input
of misleading information is only possible on user-side, eSiP has
several mechanisms to make it more robust against such cases: the
instances are proposed based on classification and pattern matching.
A wrong classification in the knowledge base hence makes it unlikely
for this incident to be proposed. In addition, multiple instances
are proposed, giving users the opportunity to compare and filter
out proposed instances that differ from all others. For ontologies,
different evaluation methods are available [18]. Researching further
possibilities to maintain gained trust is an interesting research topic
for the future.
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