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ABSTRACT

In this paper, we explore the intersection of knowledge and the
forecasting accuracy of humans when supported by visual analytics.
We have recruited 40 experts in machine learning and trained them
in the use of a box office forecasting visual analytics system. Our
goal was to explore the impact of visual analytics and knowledge in
human-machine forecasting. This paper reports on how participants
explore and reason with data and develop a forecast when provided
with a predictive model of middling performance (R2 ≈ .7). We vary
the knowledge base of the participants through training, compare
the forecasts to the baseline model, and discuss performance in the
context of previous work on algorithmic aversion and trust.

1 INTRODUCTION

Predictive visual analytics methods have been applied in a variety
of domains ranging from healthcare [1], intelligence analysis [4],
and emergency crisis management [35], and a great deal of research
in the visual analytics community has focused on explaining pre-
dictive models [5, 27, 31, 36, 42, 49] and enabling interactive model
steering [6, 23, 24, 30, 44, 46]. A variety of research methods advo-
cate adding human-machine interactions not only to improve model
understanding but also to enable knowledge injection into the sys-
tem [23, 26]. This intersection of human-machine analysis is seen
as a critical stage in the predictive visual analytics pipeline [32].
Yet, this potential for adding knowledge comes with increased risk.
Allowing humans to assert their knowledge constructs into the pre-
diction process may inherently bias the model itself [14, 41] as
humans, while a wealth of contextual information, are biased in their
own thought and knowledge [7, 17]. If human input is too closely
tied to the prediction then the prediction may become biased in its
assumptions and may become less accurate.

Such concerns are buoyed by research in the decision science
field that has shown that in forecasting tasks, machine predictions
consistently outperform human forecasters [8,9,19,43]. In fact, work
by Akes, Dawes, and Christensen [2] found that domain expertise
diminished people’s reliance on algorithmic forecasts which led to a
worse performance. Studies have also shown that humans develop
an algorithm aversion in forecasting tasks [11, 20]. Specifically,
humans quickly lose confidence in algorithmic forecasts after seeing
algorithmic mistakes [50]. Given that the underlying goal of many
predictive visual analytics methods is to inject knowledge into the
analysis and point out potential algorithmic errors to the analyst for
updating and correction, these goals may be at odds with human
behavior. As such, visual analytics could potentially contribute to
algorithmic aversion during forecasting tasks and lead to reduced
performance. Conversely, studies report that forecasters may desire
to adjust algorithmic outputs to gain a sense of ownership of the
forecasts due to a lack of trust in statistical models [12], and the goal
of many predictive visual analytics methods is to help develop trust.

Given the conflicting demands of model accuracy, comprehensi-
bility and trustworthiness, the question of how much human knowl-
edge and interaction is needed or warranted in relation to the model

becomes a critical question for predictive visual analytics. Are hu-
mans able to accurately make predictions or outperform models with
the aid of visual analytics, and what is the impact of knowledge
in a visual analytics forecasting process? We seek to better under-
stand the effects of knowledge and prediction accuracy when using
visual analytics support for human-machine forecasts. Inspired by
work from the 2013 VAST Box Office Challenge [13, 28, 34], the
goal of this study is to explore forecasting in a visual analytics
setting. Based on studies from management, economic sciences
and psychology, algorithmic forecasts commonly outperform hu-
mans. However, the results in the VAST Challenge [35] indicated
that by leveraging visual analytics methods, subjects were able to
improve forecasts from models, and a study exploring managerial
intervention in sales forecasting also found an increase in the overall
prediction accuracy [37] was achieved through human intervention.
As such, we hypothesized that with a middle level performance
model, similar to the performance of models used in related fore-
casting studies [8, 9, 19, 43], a visual analytics forecasting process
may serve as a more optimal human-machine configuration.

A controlled study was conducted to test the hypothesis that a
predictive visual analytics framework supporting human-machine
prediction will outperform the computational solution given by a
model at a middling level of accuracy. Given that visual analytics
suggests the integration of knowledge as part of the process, partici-
pants were only chosen from a pool having relevant knowledge in
forecasting to allow for a baseline control. Knowledge related to the
subject matter was then varied across participants to further explore
the intersection of knowledge, forecasting, and visual analytics. In
this paper, the term knowledge is explicitly referring to the concept
of tacit knowledge [15, 48].

The visual analytics system used in this study is modified from
previous work [3, 33], and a prediction model with a 70% goodness-
of-fit was developed. Participants were asked to predict the opening
weekend gross of 4 movies in the same genre with similar levels of
popularity using our system. This paper presents the results from
the study and serves as a starting point to discuss open challenges of
the role of visualization in human-machine forecasting.

2 BACKGROUND

The field of human factors has long been interested in the relation-
ship of humans and technology, and the effect of biases on human
decision-making has been studied throughout multiple contexts. In
particular, confirmation bias (seeking out information to confirm de-
cisions [7,38]), overconfidence bias (being too confident in abilities
which leads to taking risks [25]), and anchoring (over-reliance on
first piece of information found [17]) are specific human biases that
are known to affect decision-making. With respect to predictive ana-
lytics, each of these biases may impact how humans utilize different
analytical tools and predictive models.

A great deal of human factors work has also focused on how
humans trust machinery, specifically automation and autonomy [39].
Recent work by Hoff and Bashir [22] identified that human’s trust
in automation is highly dynamic and dependent on a multitude of
factors. Those factors can be distilled into three main areas of trust:
dispositional trust (dependent on culture, age, gender, personality),
situational trust (type of system, system complexity, task, etc.), and
learned trust (past or current experience with systems).



With these uncertain human factors, researchers have also stud-
ied the reasons why people prefer to use human predictions over
automatic models in many scenarios [14, 29]. One reason is that
humans seem to have an inherent distrust of algorithmic models, and
examples of this distrust are found in various fields including orga-
nizational planning [16], hiring [21], and clinical predictions [47].
Here, people rely on their judgment and intuition much more than
prediction algorithms, although investigations show that the predic-
tion performance could be improved if they relied more on compu-
tational models. Other studies have also indicated that lack of trust
stems from the limitation of automatic techniques and challenges of
model explainability [18, 40].

This algorithm aversion phenomenon is further discussed by Di-
etvorst, Simmons and Massey [11] where studies indicate that people
are less likely to use forecasts from an algorithm after seeing it per-
form and learning that it is imperfect, even if they also see that it
outperforms the human forecaster. A related study [12] found that
people are much more willing to use forecasts from an imperfect
algorithm when they can retain a slight amount of control over the
algorithm’s forecasts. This study found that letting people adjust an
imperfect algorithm’s forecasts would increase both their chances of
using the algorithm and their satisfaction with the results. However,
the authors also found that participants in the study often worsened
the algorithm’s forecasts when given the ability to adjust them. Di-
etvorst [10] studied the decision process that leads people to rely
on human predictions instead of algorithmic predictions. In this
study, it was found that the prediction method used depends on (1)
the status quo prediction method which is a default choice, and (2)
whether an alternative method can meet people’s counter-normative
reference points. Given these results, it is clear that more studies are
needed to provide guidelines for methodologies and designs when
supporting forecasting with visual analytics.

3 EXPERIMENTAL DESIGN

The goal of this experiment is to identify the impacts of tacit
knowledge in a predictive visual analytics setting. In this experi-
ment, we control for tacit knowledge by exclusively selecting par-
ticipants who have knowledge in forecasting. Graduate students in
the business school, industrial engineering and computer science
with expertise in data analysis and forecasting were recruited. All
participants had strong knowledge of linear regression models, and
had applied these in their own data analyses. This means that all
participants had a baseline domain expertise relevant to the type of
model used in the experiment (i.e., linear regression model).

After controlling our subject pool to ensure that our participants
had similar tacit knowledge with respect to forecasting, we then
controlled for domain knowledge by providing half of the partici-
pants with additional training on movies in order to emulate specific
subject (movie) domain knowledge (as compared to the broad fore-
casting domain knowledge that all participants have). Participants
were then required to use a web-based visual analytics system to
predict the opening weekend gross of a movie. A baseline compu-
tational model is given as a reference, and a set of visual analytics
tools on the movie’s meta-data and twitter data is provided. We then
collected system interactions and forecasts for four different movies
in order to explore the following research questions:

• Can a participant (with visual analytics support) develop more
accurate forecasts than a model of middling level accuracy?

• Can a participant with extra knowledge develop more accurate
forecasts than a participant without such knowledge given the
same visual analytics environment?

Here, we note that it is almost impossible to emulate an expert
with years of experience in a user study. However, access to a large
sample size of domain experts is difficult to obtain (and impossible

for some domains). What we feel is interesting about this study
is that (to our knowledge), this is the first attempt to control for
the effects of knowledge in a human-machine forecasting setting.
Compared to previous studies, which were conducted on Amazon
Turk [10] or on business school students [11], we focused on con-
trolling for knowledge in predictive analytics. Previous work by
Dietvorst [10] did not control for expertise, and Dietvorst et al. [11]
assumed that business school students would have some intuition
about MBA admissions (however, there was no guarantee of ex-
pertise). By selecting participants who have domain expertise in
forecasting and augmenting participants’ knowledge of predictive
analytics with knowledge that will be directly relevant to the pre-
diction, participants with the augmented knowledge should have an
advantage in the prediction process.

By splitting our predictive analysis domain experts into two
groups, we can explore the potential impact of extra domain knowl-
edge. This is not to say that some participants are not domain
experts. All participants in this study are experts in predictive analyt-
ics; however, recruiting box office prediction experts at the size and
scale needed for a formal user study is not realistic. Many domains
explored in predictive analytics often have an extremely limited
number of domain experts (and box office prediction is no differ-
ent). However, the general population has some inherent knowledge
of movies, and we have further selected participants based on di-
rect knowledge of predictive analytics. By recruiting participants
that have domain knowledge in prediction and then adding specific
knowledge (that was designed to be useful), we can begin exploring
the differences between two such groups. Although there are lim-
itations in this proposed methodology, this study provides (to our
knowledge) the first attempt to compare the impact of different types
of knowledge in forecasting tasks.

3.1 Hypotheses

Our experiment examines the role of humans (compared to au-
tomatic models and/or pre-defined approaches) and the effect of
participant knowledge in predictive visual analytics. In this study,
our hypotheses were tested by comparing the performance between
participants (all of which are experts in predictive analytics) where
some participants are provided with specific domain knowledge.

3.1.1 Prediction Performance

Visual analytics use cases have shown that interactive analytics
can contribute to intelligence analysis by integrating domain knowl-
edge through feature selection and subsequent model adjustments.
Hence, participants possess the ability to analyze real world pre-
diction problems more comprehensively than relying solely on a
model. The impact of the participant’s knowledge should be re-
flected in the prediction performance and having domain knowledge
is hypothesized to contribute positively to the prediction accuracy.
Hypothesis 1: Participants will make more accurate predictions
than purely algorithmic models when using visual analytics.
Numerous studies indicate that participants’ predictions are gener-
ally worse than model predictions, and at the same time, others cite
the opposite. Additionally, some research has shown that partici-
pants’ confidence and satisfaction improve after being allowed to
make changes based on a model’s prediction [12]; however, pre-
diction outcomes do not tend to improve. As a result, participants’
contributions to prediction accuracy may be limited. Our goal is to
further explore how participants’ knowledge plays into the predictive
analytics task in a visual analytics environment.
Hypothesis 2: Participants with more domain knowledge will
make more accurate predictions than participants with less do-
main knowledge.
Prediction performance has been claimed to be dependent on the
integration of participants’ domain knowledge. We hypothesized



that participants with more domain knowledge will predict more
accurately than participants with less knowledge.

3.1.2 Algorithm Aversion with Domain Knowledge

In the previous research, Akes, Dawes, and Christensen [2] found
that domain expertise diminished people’s reliance on algorithmic
forecasts which led to a worse performance. It is reasonable to
expect that a participant could refer to the model’s prediction as
one important factor in making their own predictions. However, the
anchoring to the computational model prediction is hypothesized to
be less when the participant has more domain knowledge because
they are more likely to notice errors in the model and prone to be
more confident in making adjustments. As such, we expect that
participants with more domain knowledge will adjust the forecasts
more than participants with less domain knowledge.
Hypothesis 3: Participants with more subject knowledge will
apply greater adjustments to the forecast than participants with
less subject knowledge.

3.2 Experimental Design Factors

In order to test our hypotheses, we developed a predictive model
with an approximately 70% goodness-of-fit. Additionally, we de-
signed the experiment with two experimental groups with each group
having expertise in data analysis but one set of training was designed
to simulate movie expertise. The task was to utilize a visual analytics
system to make predictions of movies’ opening weekend gross.

3.2.1 Dataset

Our box office prediction task uses movie meta-data from the
Internet Movie Database (IMDB) and social media posts from Twit-
ter. The meta-data includes release date, genre, MPAA rating, and
estimated budget. For social media data, following the data collec-
tion strategy of the 2013 VAST Box Office Challenge [34], we have
collected movie related tweets for 388 movies in the United States
released from January 2013 to April 2017. Tweets are crawled using
the Twitter Streaming API [45] by searching the hashtag extracted
from each movie’s official Twitter account. In this study, we use
tweets posted two weeks prior to each release date.

3.2.2 Baseline Model in the Experiment

Linear regression analysis was applied on a variety of factors (Ta-
ble 1) from both twitter data and movie meta-data to fit the opening
weekend gross. Our linear regression model uses a square root data
transformation on the response for a normal residual distribution.

Baseline Model:
grosssr = β0 +β1Budget +β2T BD+β3Screen+ ε.

This model has R2 = 71.71%,R2
ad j = 71.49%,R2

pred = 70.46%.

3.2.3 Movie Knowledge Training

As previously stated, our experimental design was to randomly
assign participants into two groups, the Data Group and the Movie
Group. Both groups have knowledge in forecasting; however, the
Movie Group participants were provided extra knowledge during
training to simulate domain expertise . Training information was
developed to provide insights into movie performance that may not
be obvious to experts with only a data analysis background. As part
of the Movie Group condition, participants were presented a 19-page
training document containing knowledge designed to be useful in
their predictions, such as how release time, etc. could affect revenue.

To validate that they gained knowledge, participants in this group
were given a quiz about the training material. The quiz had 6 mul-
tiple choice questions. 17 participants scored 6/6 and 3 scored 5/6.
Unknown to the participants, the knowledge provided was specific

Table 1: Variables used in the Experimental Visual Interface

Variable Description
Gross 3-day Opening Weekend Gross

Budget Approximate movie budget in M dollars
Screen The number of theaters a movie is released in

TBD The average daily number of Tweets over the 2
weeks prior to release

to the movies they would encounter during the analysis and was de-
signed to give insight into if these movies over-performed or under-
performed with respect to the baseline model. For example, partic-
ipants were told that movies that engage in counter-programming
(such as action movies on Valentine’s Day weekend) over-perform
on box-office returns. While this knowledge may not always be true,
for the movies in our forecasting challenges, this concept is accurate.
Thus, we simulate additional knowledge in one set of participants
(again, all participants have expertise in forecasting) and compare
this to participants who have domain knowledge in data analysis but
have no extra movie domain specific information. In the control con-
dition, participants receive training that is equally long but provides
no relevant domain knowledge.

3.2.4 Other Factors

Participant bias: To mitigate participant bias, we narrowed down
our subjects to be full-time undergraduate and graduate students with
data analytics skills. Specifically, each subject was required to have
minimally completed a course in machine learning, data mining, or
statisical forecasting. In addition, each participant estimated four
movies’ opening weekend gross to reduce randomness.
Movie bias: A movie, as the object of this prediction task, might
also impact the performance and variance of different participants’
predictions. In order to mitigate such movie bias, we selected par-
ticularly well-known movies based on a high Tweet count and all 4
movies are from the same genre (Action).
Order bias: A major concern for repeated prediction tasks is that
participants will become familiar with the system and task, or par-
ticipants may become fatigued as more time is spent on these tasks.
This can lead to performance variation simply due to the order the
movies were presented. To avoid such bias, we randomized the order
in which the movies were presented.

3.3 Visual Analytics Interface Design

The experiment reported in this article utilizes a previously de-
veloped visual analytics framework (where the visual designs were
comparable to other teams participating in the contest) for box office
analysis and prediction [3] that has been modified to: (1) facilitate
the recording and implementation of the experiment, and; (2) pro-
vide a convenient way for analysts to explore and analyze the data.
The visual analytics framework used has been extensively tested in
various forms for usability, and survey results from this study (and
others) indicates that the system is easy to use.

This visual analytics system consists of six visual components:
Homepage, Model Prediction, Weekend Market Share, Sentiment
Analysis, Movie Similarity, and Make Prediction. The system uses
pre-processing to extract useful information from large-scale, noisy,
and unstructured Twitter data. These data are then integrated into
the visual analytics system for easy exploration and knowledge
extraction. We have used numerical and nominal features shown in
Table 1 that are extracted from IMDB and Twitter.

The Homepage shows basic information for the weekend under
prediction and a system tutorial. It contains the date of the weekend
and a brief introduction to the released movies on that weekend. The
Make Prediction page is where participants submit final predictions.
This page lists the numerical prediction result of the baseline model
and the weekend market share model (which is used in the Weekend



(a) Model Prediction Page (b) Weekend Market Share Page

(c) Sentiment Analysis Page (d) Movie Similarity Page

Figure 1: The four main visual components in the experiment for data exploration and predictive analytics.

Market Share page). These two predictions can be referred to by the
participant while analyzing the data and making a decision without
being restricted by any model predictions. The other pages contain
visualizations and the participants can navigate between them freely.

The Model Prediction page (Figure 1(a)) shows the baseline
model’s results and performance for movies released in the current
week and previous three weeks. This page orders the movies by
their release dates along the y-axis with current week on top and
separate movies by each week using solid lines, and it plots the
model’s prediction value along the x-axis. The green circle and
surrounding gray bar show the model’s prediction value and its 95%
confidence interval, whereas the black squares indicate the actual
opening weekend gross for previous movies. Mousing over the plot
shows a dashed line referring to the gross axis. To look at the exact
values of a movie the participant can click on the green circle to
open a pop-up context window.

The Weekend Market Share page (Figure 1(b)) visualizes the
result from a temporal model of weekend market prediction for
the participants to identify seasonal patterns. This page has three
horizontal bars where each one consists of 55 squares covering
a whole year’s weekends prior to the weekend under prediction.
The revenue of each weekend is shown by the color of its square
according to a sequential color scale where the light color means
low revenue and the dark color means high revenue. The three
horizontal bars correspond to the temporal model’s prediction, the
real value of the sum of all newly released movies, and the real total
weekend gross of all currently playing movies. Mousing over these
squares will line up the weekends from these three bars and clicking
on the square can highlight this weekend and display the details
of the released movies and the revenue of that weekend. Holidays
are marked on top for special day highlights. The exact values of
the temporal model’s prediction are visualized as pie charts for the
current weekend and the corresponding weekend in the last year.

The Sentiment Analysis page (Figure 1(c)) consists of a senti-
ment wordle and a sentiment river plot [35]. Here, participants are
provided with an overview of the public’s expectation of a movie.
Positive/negative sentiment is shown as blue/red.

The visual analytics environment also supports the comparison
between movies in the Movie Similarity page (Figure 1(d)). Similar
movies can be filtered by selecting the movie’s MPAA rating and
its genre(s). Once a metric is selected, the movies are first filtered
by these metrics and the five most similar movies ordered by tweet
volume trend are displayed. The left side of this page lists the options
of filtering for similar movies and the right side uses small multiple
views to show the five most similar movies and the current movie
under prediction (the top one). The view of each movie contains a
line chart of the tweet volume trend and the prediction.

4 EXPERIMENT

Forty participants were recruited and randomly assigned into
two groups (Data Group and Movie Group) with 20 participants in
each. The Data Group received training on how to write a movie
script (but not about box office prediction) and the Movie Group
received training pertaining to box office forecasting. Each group
had 5 female participants and 15 male participants. The Data Group
had 1 undergraduate and 19 graduate students and the Movie Group
had 2 undergraduates and 18 graduate students. The average age
was 26.3 years old, ranging from 19 to 31. Each participant partici-
pated in a training session, a practice prediction session, and four
experimental prediction sessions. Their workload was evaluated
twice using the NASA Task Load Index (NASA TLX) measure;
once after the practice session and once after the last prediction was
cast. The participants also completed a demographic questionnaire
about their background, knowledge of predictive analytics, computer
usage, and familiarity with the presented movies. Each session took
approximately 2.5 hours.

4.1 Training

Each participant was trained at the start of the experiment. Train-
ing consisted of two parts, a domain knowledge training and a system
usage training. Both training materials were presented using Pow-
erPoint slides. After the training, the researcher loaded the visual
analytics interface and participants were instructed to access the
system “Tutorial” page in order to ensure that they knew where it



M1 M2 M3 M4 M5 M6 M7 M8 M9
M10 M11 M12 M13 M14 M15 M16 M17 M18 M19 M20

Movie Group

D1 D2 D3 D4 D5 D6 D7 D8 D9
D10 D11 D12 D13 D14 D15 D16 D17 D18 D19 D20

Data Group

The Legend of Tarzan
Model RAE
0.158

0.0

1.0

Kong: Skull Island
Model RAE
0.149

0.0

1.0

Jason Bourne
Model RAE
0.292

0.0

1.0

Doctor Strange Model RAE
0.339

0.0

1.0

Figure 2: The RAE of each prediction organized by movie and data group. Each bar chart shows the RAE of one group participants’ estimates for one movie, and
the horizontal black line indicates the model’s error. If the bar is below the line, the participant’s forecast is better than the model (darker color), and vice versa.

was located. The researcher also pointed out the timer which was set
for each session (15 minutes). The training PowerPoint and the “cal-
culator” were also opened for participants’ reference. Participants
were also provided with scratch paper (for notes/calculations) and a
prediction sheet to write down their final prediction.

4.2 Predictions

Exploration and predictions consisted of a practice prediction
and four real predictions. The participants started with a 15-minute
practice session, during which participants were given the movie
John Wick: Chapter Two to explore. An embedded timer is shown
in the system and participants were encouraged to finalize their
prediction before 15 minutes were up. However, the system was
designed so that participants could take longer to cast their prediction
if they needed to. We allowed participants to take longer because
our primary focus of this study was to understand the human aspect
during the predictive visual analytics task. Participants were also
encouraged to ask questions to ensure comprehension of the task
and the interface. After the practice session, the participants were
given a 10-minute break.

After the break, the participants completed four predictions. For
each prediction, participants were encouraged to submit their answer
within 15 minutes. The following movies were presented to the
participants in a random order: The Legend of Tarzon, Jason Bourne,
Doctor Strange, and Kong: Skull Island. After the experiment, the
participants’ written prediction sheets were collected. The system
records the prediction and interactions with each interface feature.

4.3 Questionnaires

To evaluate the participants’ mental workload, a NASA TLX
was administered twice during the experiment, the first time after
the practice session and the second time after the last prediction.
It was expected that participants with domain knowledge (i.e., the
movie group) experience less stress and workload and have more
confidence in completing the tasks. A demographics questionnaire
was also administered at the end of the experiment to evaluate the
participants’ background (age, gender, education), domain knowl-
edge (movie familiarity, frequency of “going to the movies”), social
media usage (frequency), and knowledge of predictive analytics (fa-
miliarity with mathematical models). Finally, participants were also

asked a free-response question aimed to assess how they analyzed
the data, and elicit strategies used to analyze the data.

5 RESULTS

Our analysis uses the predictions made on a total of 160 predic-
tions for four movies (which excludes the practice session). The
demographics questionnaire and the NASA TLX evaluations were
used to gain a deeper understanding of how participants worked
through the analysis.

5.1 Prediction Performance

To test hypothesis 1, the participants’ predictions were first com-
pared to the model predictions. To test hypothesis 2, the predictions
in the Data Group were compared to the predictions in the Movie
Group. The relative absolute error (RAE), which is the percentage
error deviating from the real value, is used to measure the accuracy.

RAE =
|Prediction−RealValue|

RealValue
(1)

Figure 2 displays the RAE for each prediction. To test our first
prediction performance hypothesis, a two-sample t-test with equal
mean as the null hypothesis on the participants’ RAE and the model’s
RAE was applied. The statistic result is given in Table 2. The result
shows no significant difference with a p-value = 0.965. Therefore,
the first hypothesis that participants will make more accurate
predictions than purely algorithmic models when using visual
analytics is not supported. While the difference between the mean
RAE is only 0.0029, the standard deviation in participant predictions
is as large as 0.162 compared to a 0.237 mean value. This indicates
a large variance in participants’ performance, as seen in Figure 2.

Next, we performed a two-sample t-test between the predictions
in each group and the predictions given by the model and found no
significant difference between their means (Table 2). Thus, the sec-
ond hypothesis that participants with more domain knowledge
will make more accurate predictions than participants with less
domain knowledge is not supported.

What is interesting is that results from testing Hypothesis 1 does
not completely align with previous work [8, 9, 19, 43] which found
significant differences between machine predictions and human pre-
dictions (previous studies used model accuracies in the range of 70%



Table 2: Results of four two-sample t-tests for participant prediction perfor-
mance compared to the model performance and between the two participant
groups. RAEs are used as the samples and equal mean is the null hypothesis.

Sample N Mean StDev P-Value
Participant RAE 160 0.238 0.162 0.965Model RAE 4 0.235 0.095
Movie Group RAE 80 0.253 0.167 0.740Model RAE 4 0.235 0.095
Data Group RAE 80 0.222 0.156 0.817Model RAE 4 0.235 0.095
Data Group RAE 80 0.222 0.156 0.220Movie Group RAE 80 0.253 0.167

– 83%). Furthermore, results from testing Hypothesis 2 does not fully
align with previous work [2] where domain expertise led to worse
performance in forecasting. In our study, while we did not find a sig-
nificant difference between the participants’ predictions and model
predictions, the fact that participants were not significantly worse
may indicate that other factors bolstered participants’ responses.
Previous findings [12] found that people are much more willing to
use forecasts from an imperfect algorithm when they can retain a
slight amount of control over the algorithm’s forecasts. Given that
visual analytics allows participants to explore the data and model,
our findings hint towards improved explainability and trust being
developed as part of the visual analytics process, resulting in (poten-
tially) more trust in the model (which may be why the participants’
forecasts were not significantly different than the machine forecasts).
Further studies are needed to confirm/reject these relationships.

5.2 Algorithm Aversion of Domain Knowledge

Our third hypothesis directly explores trust in the model through
the proxy of a participant’s adjustment. The computational model
used in our experiment was approximately 70% accurate. On aver-
age, participants made a 19.2% adjustment from the model’s predic-
tion to their own prediction. The largest change was 80.4% made by
participant M11 for Doctor Strange. There were only 5 predictions
out of the 160 estimates that were adjusted by less than 2%, and 22
predictions were adjusted by less than 5%.

Work by Akes, Dawes, and Christensen [2] found that domain ex-
pertise diminished people’s reliance on algorithmic forecasts which
led to a worse performance. While our results indicate that the
participants’ forecasts are not significantly different than the model
(meaning that domain expertise did not lead to a significant differ-
ence in performance), we also tested to see if the amount of domain
knowledge (Movie Group vs. Data Group) would result in more
adjustments to the forecast, indicating more algorithm aversion. To
explore this, the correlation between the participant’s prediction and
the model prediction was analyzed. The Pearson correlation between
the Movie Group predictions and model predictions is 0.578 with
participants adjusting each forecast by an average of 20.25%. The
Pearson correlation between the Data Group predictions and the
model predictions is 0.664 with participants adjusting each fore-
cast by an average difference of 17.87%. There was no statistical
significance between the two groups. Therefore, our third hypoth-
esis that participants with more subject knowledge will apply
greater adjustments to the forecast than participants with less
subject knowledge is not supported. As such, our findings do not
fully support the results of previous work [2] where domain experts
showed diminished reliance on the algorithmic forecasts.

5.3 Demographics Questionnaire Analysis

To further explore domain expertise, we also tested whether par-
ticipants significantly differed among each other in terms of their
prediction performance and familiarity of movies based on their
own self-assessment measure. For each estimate, we had asked our
participants if they were familiar with the movie; from the total 160

estimates, 86 marked that they were familiar and 74 marked that they
were not. We applied a two-sample t-test on participant prediction
RAE between familiar and unfamiliar and we found no significant
difference (p-value = 0.200) between those self-reporting as having
movie knowledge and those self-reporting as not.

5.4 NASA TLX Analysis

Finally, we compared and evaluated the mental effort and task
demands of the forecasting process using the NASA TLX workload
measure. We found that mental effort and task demands signif-
icantly differed across the two groups (Movie and Data Group).
There was a significant difference between Data Group participants
(M=7.00, SD=1.83) and Movie Group (M=5.45, SD=1.89) partici-
pants, t(78)=-3.73, SE=.42, p=.00, d=.83 in their mental effort rating.
Overall, Data Group individuals found that predicting movie earning
amounts was more taxing than the Movie Group individuals. There
was also a significant difference between Data Group participants
(M=6.68, SD=1.46) and Movie Group (M=7.4, SD=1.46) partici-
pants, t(78)=2.22, SE=.33, p=.03, d=.50 in their accomplishment
rating. Here, Data Group individuals viewed themselves as less suc-
cessful at predicting movie earning amounts than the Movie Group
individuals. Lastly, there was a significant difference between Data
Group participants (M=6.63, SD=2.63) and Movie Group (M=7.83,
SD=2.04) participants, t(73.43)=2.28, SE=.33, p=.03, d=.51 in their
emotional state rating. Data Group individuals felt more stressed
than the Movie Group individuals during the prediction tasks. This
may indicate that increased knowledge is leading to over-confidence
bias resulting in higher (on average) deviations from the model
which would be consistent with previous research [2] that found that
domain expertise diminished reliance on algorithmic forecasts.

6 CONCLUSIONS AND FUTURE WORK

Work in the visual analytics community has demonstrated that
experts could benefit from tools that support the integration of do-
main knowledge with interactive visual exploration. In terms of
predictive analytics, visual analytic techniques have also been used
to help improve the comprehension of data, model, and prediction re-
sults. Visual analytics techniques that enable participants to interact
within the predictive modeling process have also reported benefits.
However, the social and management science communities have
deliberated for decades as to whether or not humans can improve
algorithmic prediction. Unfortunately, the literature does not provide
a clear answer, and the impacts of visual analytics in the forecasting
process have yet to be fully explored.

This study represents an initial step in exploring the intersec-
tion of domain knowledge, forecasting, and visual analytics. As
noted, our findings do not fully support the results of previous stud-
ies [8, 9, 19, 43]. We find that our participants’ forecasts were not
significantly different (in terms of accuracy) when compared to the
algorithmic forecasts. We also found that participants receiving
additional information on the movie business did not perform any
better than participants without such knowledge. However, previous
studies did not engage the participants with a visual analytics inter-
face. As such, the fact that particpants did not under-perform can
be seen as an indicator that a visual analytics approach to forecast-
ing may yield positive results. Although our hypotheses were not
supported, our research study remains valuable as it is the first (to
our knowledge) controlled study for evaluating human participants
during a predictive visual analytics task.
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